Ecological studies of hypogeous fungi. II. Sporocarp phenology in a western Oregon Douglas Fir stand

1976 ◽  
Vol 54 (10) ◽  
pp. 1152-1162 ◽  
Author(s):  
Robert Fogel

Sporocarp phenology of hypogeous or subterranean fruiting fleshy fungi was studied between March 1972 and March 1975 in a 40- to 65-year-old Douglas fir stand in western Oregon. Estimates of yearly productivity ranged from 11052 to 16753 sporocarps ha−1 and 2.3 to 5.4 kg dry weight ha−1. The productivity curve was bimodal as a result of temperature and moisture effects, with peaks in May–June and October. Eleven hypogeous ascomycete species and 13 hypogeous basidiomycete species were collected during the study. Major species that each accounted for 5% or more of the total weight were Tuber murinum, Hymenogaster parksii, Hysterangium crassum, H. separabile, and Truncocolumella citrina var. citrina. Sporocarp moisture content as determined for several species presumably varied with sporocarp age and soil moisture content and ranged from 17.4 to 88.6%. Hypogeous sporocarps had substantially higher macronutrient contents of N, P, and K plus the micronutrients Fe and Al than did epigeous sporocarps of Fomes pinicola. Sporocarp numbers increased exponentially with distance from nearest live Douglas fir stem to a peak at 160 to 200 cm, beyond which numbers dropped sharply. The optimum sporocarp zone was slightly less than the average midpoint between tree stems (205 cm).

1994 ◽  
Vol 4 (4) ◽  
pp. 225 ◽  
Author(s):  
JC Valette ◽  
V Gomendy ◽  
J Marechal ◽  
C Houssard ◽  
D Gillon

The aim of this study was to analyse the effects of duff thickness and moisture content, and of soil moisture content on the transfer of heat in the soil. The experimental design used intact soil blocks with their duff layer, subjected to controlled fires of variable very low intensities of up to 100 kW m-1. The fuel on the surface was composed of needles and twigs of Pinus pinaster. The maximum temperatures measured within the fuel were of the order of 650 degrees C and were independent of the fireline intensities. For fires with fireline intensity of the order of 30 kW m-1, the presence of the duff layer reduced from 330 degrees C the temperature rise at the soil surface. Duff thickness played only a secondary role, but increasing moisture content reinforced its insulating effect, so that the temperature rise was 2.5 times less at 1 cm depth in the duff when the moisture content exceeded 70% dry weight, than when the moisture content was less than 30%. For more intense fires (> 50 kW m-1) that produced longer-lasting surface heating, duff thickness and moisture content played an important role in significantly reducing the temperature rise at the soil surface (range 140 degrees C to 28 degrees C). Because of low soil thermal conductivity, temperature attenuation with increasing depth was noticed. In the case of low intensity fires (< 30 kW m-1) in the absence of a duff layer, the maximum temperatures were reduced from 350 degrees C at the surface to 7 degrees C at 3.5 cm. The temperature rise in the soil decreased with depth according to a negative exponential relation. The rate constant of this relation was greater when the initial surface temperature and the soil moisture content were higher. For the soil studied, and under the moisture conditions encountered (between 7 and 19% of dry weight), the rate constant could be predicted with acceptable precision (r2 = 0.67), if the surface soil temperature rise and the soil moisture content were known. In these experimental fires, which were carried out when the air temperature did not exceed 20 degrees C, lethal temperatures (> 60 degrees C) were measured in the upper few centimetres of the duff layer in very low-intensity fires, and in the upper few centimetres of the soil (where nutrients are most concentrated and biological activity most intense) in the slightly more intense fires. The fire intensities were always very moderate, and of the order of magnitude df those encountered in the prescribed burns conducted on fuel-breaks of the french Mediterranean area. Their impact on the surface of the forest soil, in terms of lethal temperatures transmitted to the horizon rich in organic matter, are not negligible. In contrast, below 3 to 5 cm depth, prescribed burns, conducted under the conditions of the experiments, would not lead to significant change to nutrients or microfaunal or microfloral activity; in particular, root tips would not be subjected to heat stress sufficient to kill them.


1964 ◽  
Vol 62 (1) ◽  
pp. 55-57 ◽  
Author(s):  
J. L. Beveridge ◽  
F. Hanley ◽  
R. H. Jarvis

1. Three experiments designed to investigate the effects of consolidation and aeration of soil beneath potato seed tubers before planting, and inter-row grubbing after planting, on the growth and yield of potatoes are described and the results discussed.2. Consolidation of furrows beneath seed tubers by tractor wheels at planting had no effect on total weight of ware-size tubers produced but increased the weight of mis-shapen waresize tubers. It is argued that this effect was related to soil moisture content and tilth at planting time.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haowen Luo ◽  
Meiyang Duan ◽  
Leilei Kong ◽  
Longxin He ◽  
Yulin Chen ◽  
...  

2-acetyl-1-pyrroline (2-AP) is the key compound of rice aroma. However, the responses of 2-AP biosynthesis in fragrant rice under different soil moisture and the corresponding mechanism are little known. The present study evaluated the effects of different soil moisture on 2-AP biosynthesis through a pot experiment. Four soil moisture contents, that is, 50% (SM50), 40% (SM40), 30% (SM30), and 20% (SM20), were adopted, and SM50 treatment was taken as control. The pots were weighed and watered to maintain the corresponding soil moisture content. The results showed no significant difference in growth parameters (plant height, stem diameter, and plant dry weight) among all treatments. Compared with SM50, SM40, SM30, and SM20 treatments significantly (p&lt;0.05) increased 2-AP content by 32.81, 23.18, and 53.12%, respectively. Between 20 to 90% higher proline content was observed in SM40, SM30, and SM20 treatments than in SM50. Enzymes including proline dehydrogenase, ornithine transaminase, and 1-pyrroline-5-carboxylate synthetase exhibited lower activities with soil moisture declined. Higher diamine oxidase activity was observed in SM40, SM30, and SM20 treatments compared with SM50, and real-time PCR analyses showed that transcript level of DAO1 was greatly increased under low soil moisture treatments, especially in SM20 treatment. Transcript levels of PRODH, DAO2, DAO4, DAO5, OAT, P5CS1, and P5CS2 decreased or maintained in SM40, SM30, and SM20 treatments compared with SM50. We deduced that low soil moisture content enhanced 2-AP biosynthesis mainly by upregulating the expression of DAO1 to promote the conversion from putrescine to 2-AP.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 576 ◽  
Author(s):  
Settawoot Wongnoi ◽  
Poramate Banterng ◽  
Nimitr Vorasoot ◽  
Sanun Jogloy ◽  
Piyada Theerakulpisut

Additional information on the physiological performances for different cassava genotypes would support better decision-making about desirable genetic resources for water-limited conditions. The objective of this study was to evaluate the physiological expression and yield of eight different cassava genotypes grown under a dry environment during high storage root accumulation. The eight cassava genotypes, i.e., Kasetsart 50, Huay Bong 80, Rayong 5, Rayong 7, Rayong 9, Rayong 11, Rayong 90, and CMR38-125-77 were evaluated under rain-fed upland conditions at Khon Kaen University, Thailand, during 2018 to 2020. A randomized complete block design (RCBD) with three replications was used. Soil moisture contents, chlorophyll fluorescence (Fv/Fm and Fv′/Fm′), net photosynthesis (Pn), stomatal conductance, water use efficiency (WUE), relative water content (RWC) for leaf, leaf area index (LAI), specific leaf area (SLA), starch content, crop dry weight, and starch yield were observed at 180, 270, and 360 days after planting (DAP), and weather data during the experimental period were also recorded. The results from both 2018/2019 and 2019/2020 indicated that Pn was positively and significantly correlated with stomatal conductance and Fv/Fm during the high storage root accumulation stage (270 and 360 DAP) with soil moisture content lower than field capacity. CMR38-125-77 had satisfactory performances in Pn, RWC, Fv/Fm, Fv′/Fm′, stomatal conductance, LAI, SLA, WUE, biomass, starch content, and starch yield at a last growth stage with soil moisture content lower than permanent wilting point. Significant association between crop dry weight and WUE at 360 DAP was recorded, and CMR38-125-77 and Kasetsart 50 were classified as favorable genotypes with high WUE and biomass.


1966 ◽  
Vol 44 (12) ◽  
pp. 1651-1659 ◽  
Author(s):  
Richard P. Pharis ◽  
William K. Ferrell

By two drought-hardiness tests, "time to death" and "soil-moisture content at the death point", Douglas-fir seedlings from three coastal sources were shown to be less drought resistant than those from five inland sources. Lethal needle-moisture contents, although not a proved test of drought hardiness, tend to confirm this conclusion. In addition, these lethal needle-moisture values, useful as an index of whole plant viability, were established for the various sources. Two of the coastal sources differed from five inland sources in the level of this value, but the lethal points for two other sources from the Oregon Cascade Range were similar to the five inland sources. Needle moisture appears to be a workable index for determining the whole plant viability except when the plant is very close to its time of death. Plants could also be classified into coastal and inland groups on the basis of their needle moisture under well-watered conditions, with the exception of seedlings from the Arizona source which are like the coastal group.


2009 ◽  
Vol 24 (4) ◽  
pp. 173-179 ◽  
Author(s):  
Michael Taylor ◽  
Diane L. Haase ◽  
Robin L. Rose

Abstract Reforestation on harsh, high-elevation sites near the crest of the Cascade Mountains in Washington can be challenging because of persistent snowpack and extreme climatic variation. The use of tree shelters was investigated with two species, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and western larch (Larix occidentalis Nutt.), on two Yakama Nation sites across three fall planting dates. For both species, seedlings inside tree shelters had increased survival compared with nonsheltered seedlings after one growing season despite increased damage by crushing from snowpack. Volumetric soil moisture content on the western larch site increased from 10% to 17% between the first and second planting dates, resulting in no effect of planting date on western larch survival. On the Douglas-fir site, however, soil moisture content was below 12% for all fall planting dates, resulting in only 2% survival for those seedlings planted on the first planting date. First-season seedling growth was unaffected by planting date or tree shelter treatment for both species. These results indicate the critical importance of soil moisture at time of planting and onset of precipitation after planting. Use of tree shelters may improve seedling survival on a harsh, high-elevation site, but it increases potential seedling damage because of crushing by snowpack.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


Sign in / Sign up

Export Citation Format

Share Document