Cytochemical localization of acid phosphatase in endophyte cells of the semiparasitic angiosperm Comandra umbellata (Santalaceae)

1977 ◽  
Vol 55 (4) ◽  
pp. 470-475 ◽  
Author(s):  
Ronald Toth ◽  
Job Kuijt

Acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) has been localized in cells at the growing tips of the endophyte in the semiparasitic angiosperm Comandra umbellata. Lysosomes in tip cells release their contents into the apoplast at the host–parasite interface before any possible release of enzyme from disrupted host lysosomes. However, a large-scale digestion of host cells does not occur. Parasite cells release acid phosphatase and probably other lysosomal enzymes which appear to disrupt host cell membranes causing a loss in turgor pressure followed by the eventual crushing of host cells by the invading endophyte.


2019 ◽  
Vol 4 (2) ◽  
pp. 82 ◽  
Author(s):  
Caio Haddad Franco ◽  
Laura Maria Alcântara ◽  
Eric Chatelain ◽  
Lucio Freitas-Junior ◽  
Carolina Borsoi Moraes

Cell-based screening has become the major compound interrogation strategy in Chagas disease drug discovery. Several different cell lines have been deployed as host cells in screening assays. However, host cell characteristics and host-parasite interactions may play an important role when assessing anti-T. cruzi compound activity, ultimately impacting on hit discovery. To verify this hypothesis, four distinct mammalian cell lines (U2OS, THP-1, Vero and L6) were used as T. cruzi host cells in High Content Screening assays. Rates of infection varied greatly between different host cells. Susceptibility to benznidazole also varied, depending on the host cell and parasite strain. A library of 1,280 compounds was screened against the four different cell lines infected with T. cruzi, resulting in the selection of a total of 82 distinct compounds as hits. From these, only two hits were common to all four cell lines assays (2.4%) and 51 were exclusively selected from a single assay (62.2%). Infected U2OS cells were the most sensitive assay, as 55 compounds in total were identified as hits; infected THP-1 yielded the lowest hit rates, with only 16 hit compounds. Of the selected hits, compound FPL64176 presented selective anti-T. cruzi activity and could serve as a starting point for the discovery of new anti-chagasic drugs.



Author(s):  
Lourdes Ortiz-Fernández ◽  
Amr H Sawalha

AbstractThe entry of SARS-CoV-2 into host cells is dependent upon angiotensin-converting enzyme 2 (ACE2), which serves as a functional attachment receptor for the viral spike glycoprotein, and the serine protease TMPRSS2 which allows fusion of the viral and host cell membranes. We devised a quantitative measure to estimate genetic determinants of ACE2 and TMPRSS2 expression and applied this measure to >2,500 individuals. Our data show significant variability in genetic determinants of ACE2 and TMPRSS2 expression among individuals and between populations, and demonstrate a genetic predisposition for lower expression levels of both key viral entry genes in African populations. These data suggest that genetic factors might lead to lower susceptibility for SARS-CoV-2 infection in African populations and that host genetics might help explain inter-individual variability in disease susceptibility and severity of COVID-19.



1963 ◽  
Vol 41 (10) ◽  
pp. 1501-1508 ◽  
Author(s):  
J. Nielsen ◽  
R. Rohringer

In short-term experiments, cytidine-H3 was fed to rusted and healthy areas of wheat leaves. The incorporated activity, presumably residing in ribonucleic acid, was detected by microautoradiographic methods. Most of the label was found to be incorporated in host cell nuclei. Little incorporation occurred in extranuclear structures of host cells, including chloroplasts. Very long autoradiographic exposure times failed to reveal any incorporation into the fungus.Host cells in infected leaf areas contained considerably less label in their nuclei and cytoplasm than those in cells further from the site of infection. This effect of the fungus extended over some distance into uninvaded host tissue, but not beyond 100 μ from the periphery of the mycelium. The decreased cytidine incorporation in the affected host tissue is not caused by possible changes in pool size of endogenous cytidine. The significance of these results for the host–parasite interaction is briefly discussed.



2000 ◽  
Vol 68 (7) ◽  
pp. 4344-4348 ◽  
Author(s):  
Annick Gauthier ◽  
Myriam de Grado ◽  
B. Brett Finlay

ABSTRACT Enteropathogenic Escherichia coli (EPEC) inserts its receptor for intimate adherence (Tir) into host cell membranes by using a type III secretion system. Detergents are frequently used to fractionate infected host cells to investigate bacterial protein delivery into mammalian cells. In this study, we found that the Triton X-100-soluble membrane fraction from EPEC-infected HeLa cells was contaminated with bacterial proteins. We therefore applied a mechanical method of cell lysis and ultracentrifugation to fractionate infected HeLa cells to investigate the biology and biochemistry of Tir delivery and translocation. This method demonstrates that the translocation of Tir into the host cell membrane requires its transmembrane domains, but not tyrosine phosphorylation or binding to Tir's ligand, intimin.



1992 ◽  
Vol 70 (9) ◽  
pp. 1724-1733 ◽  
Author(s):  
Mei-Lee Wu ◽  
Richard T. Hanlin

The mode of penetration and infection of the peanut leaf by Leptosphaerulina crassiasca were studied by means of light and electron microscopy. The attachment of the multicellular ascospores to the leaf surface was by a mucilagenous sheath that covered the ascospores at maturity. This sheath expanded rapidly in moisture and it extended along the germ tube as it elongated. Two types of germ tubes appeared to be formed, a short one and a relatively long one. Short germ tubes were not delimited by septa, and they penetrated the cuticle and host epidermal cell wall directly without appressorium formation. Penetration occurred 2–6 h after inoculation. The wall was breached by a relatively broad infection hypha that expanded in width inside the host cell wall. The lack of mechanical rupture at the infection site indicated that penetration may involve enzymatic activity. Intracellular hyphae were present in the epidermal cells, but only intercellular hyphae occurred in the palisade and spongy mesophyll tissues. The intercellular hyphae were frequently appressed to the outer surface of the host cell wall. Infected areas rarely exceeded 1 mm in diameter, and they were only sparsely colonized by hyphae of the pathogen. Host cells in the vicinity of hyphae underwent senescence and death. One to 2 months after inoculation, pseudothecia formed in the dead tissues of detached leaves. In some instances the presence of penetration hyphae by short germ tubes induced the formation of a papilla inside the host cell wall, which either restricted growth of the infection hypha or resulted in the death of the germ tube and the cell from which it arose. Long germ tubes were delimited by simple septa and they terminated in an appressorium; however, details of their behavior were not studied. Key words: Arachis hypogaea, Ascomycotina, Dothideales, leaf scorch, pepper spot.



2021 ◽  
Author(s):  
Luana G. Morão ◽  
Lívia R. Manzine ◽  
Angélica Luana C. Barra ◽  
Lívia Oliveira D. Clementino ◽  
Raíssa F. Gutierrez ◽  
...  

AbstractStructural biology projects are highly dependent on the large-scale expression of soluble protein and, for this purpose, heterologous expression using bacteria or yeast as host systems are usually employed. In this scenario, some of the parameters to be optimized include (i) those related to the protein construct, such as the use of a fusion protein, the choice for an N-terminus fusion/tag or a C-terminus fusion/tag; (ii) those related to the expression stage, such as the concentration and selection of inducer agent and temperature expression and (iii) the choice of the host system, which includes the selection of a prokaryotic or eukaryotic cell and the adoption of a strain. The optimization of some of the parameters related to protein expression, stage (ii), is straightforward. On the other hand, the determination of the most suitable parameters related to protein construction requires a new cycle of gene cloning, while the optimization of the host cell is less straightforward. Here, we evaluated a scalable approach for the screening of host cells for protein expression in a structural biology pipeline. We evaluated six Escherichia coli strains looking for the best yield in soluble protein expression using the same strategy for protein construction and gene cloning. For the genes used in this experiment, the Arctic Express (DE3) strain resulted in better yields of soluble proteins. We propose that screening of host cell/strain is feasible, even for smaller laboratories and the experiment as proposed can easily be scalable to a high-throughput approach.



Author(s):  
Maurizio Sorice ◽  
Roberta Misasi ◽  
Gloria Riitano ◽  
Valeria Manganelli ◽  
Stefano Martellucci ◽  
...  

Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host–guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.



2020 ◽  
Author(s):  
Avijit Sardar ◽  
Aritraa Lahiri ◽  
Amirul Islam Mallick ◽  
Pradip Kumar Tarafdar

The entry of enveloped viruses requires fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such virus-host cell membrane fusion may emerge as a broad-spectrum antiviral agent to neutralize the infection from an increasing diversity of harmful new viruses. Mycobacterium survives inside the phagosome of the host cells by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat containing protein suggest that the tryptophan-aspartic acid (WD) sequence is placed at distorted β-meander motif (more exposed) whereas the WD resides in regular β-meander motif in other WD40 proteins. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (lipid-WD), which effectively inhibit the membrane fusion by increasing interfacial order and decreasing water penetration, surface potential. The effective fusion inhibitory role of mycobacterium inspired lipo-dipeptide was applied to combat type 1 influenza virus (H1N1) infection as a ‘broad spectrum’ antiviral agent.<br>



2020 ◽  
Author(s):  
Avijit Sardar ◽  
Aritraa Lahiri ◽  
Amirul Islam Mallick ◽  
Pradip Kumar Tarafdar

The entry of enveloped viruses requires fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such virus-host cell membrane fusion may emerge as a broad-spectrum antiviral agent to neutralize the infection from an increasing diversity of harmful new viruses. Mycobacterium survives inside the phagosome of the host cells by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat containing protein suggest that the tryptophan-aspartic acid (WD) sequence is placed at distorted β-meander motif (more exposed) whereas the WD resides in regular β-meander motif in other WD40 proteins. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (lipid-WD), which effectively inhibit the membrane fusion by increasing interfacial order and decreasing water penetration, surface potential. The effective fusion inhibitory role of mycobacterium inspired lipo-dipeptide was applied to combat type 1 influenza virus (H1N1) infection as a ‘broad spectrum’ antiviral agent.<br>



2018 ◽  
Author(s):  
Theresa Nauth ◽  
Franziska Huschka ◽  
Michaela Schweizer ◽  
Jens B. Bosse ◽  
Andreas Diepold ◽  
...  

AbstractType III secretion systems (T3SSs) are essential virulence factors of numerous bacterial pathogens. Upon host cell contact the T3SS machinery - also named injectisome - assembles a pore complex/translocon within host cell membranes that serves as an entry gate for the bacterial effectors. Whether and how translocons are physically connected to injectisome needles, whether their phenotype is related to the level of effector translocation and which target cell factors trigger their assembly have remained unclear. We employed the superresolution fluorescence microscopy techniques Stimulated Emission Depletion (STED) and Structured Illumination Microscopy (SIM) as well as immunogold electron microscopy to visualizeY. enterocoliticatranslocons during infection of different target cell types. Thereby we were able to resolve translocon and needle complex proteins within the same injectisomes and demonstrate that these fully assembled injectisomes are generated in a prevacuole, a PI(4,5)P2 enriched host cell compartment inaccessible to large extracellular proteins like antibodies. Furthermore, the putatively operable translocons were produced by the yersiniae to a much larger degree in macrophages (up to 25% of bacteria) than in HeLa cells (2% of bacteria). However, when the Rho GTPase Rac1 was activated in the HeLa cells, uptake of the yersiniae into the prevacuole, translocon formation and effector translocation were strongly enhanced reaching the same levels as in macrophages. Our findings indicate that operable T3SS translocons can be visualized as part of fully assembled injectisomes with superresolution fluorescence microscopy techniques. By using this technology we provide novel information about the spatiotemporal organisation of T3SS translocons and their regulation by host cell factors.Author SummaryMany human, animal and plant pathogenic bacteria employ a molecular machine termed injectisome to inject their toxins into host cells. Because injectisomes are crucial for these bacteria’s infectious potential they have been considered as targets for antiinfective drugs. Injectisomes are highly similar between the different bacterial pathogens and most of their overall structure is well established at the molecular level. However, only little information is available for a central part of the injectisome named the translocon. This pore-like assembly integrates into host cell membranes and thereby serves as an entry gate for the bacterial toxins. We used state of the art fluorescence microscopy to watch translocons of the diarrheagenic pathogenYersinia enterocoliticaduring infection of human host cells. Thereby we could for the first time - with fluorescence microscopy - visualize translocons connected to other parts of the injectisome. Furthermore, because translocons mark functional injectisomes we could obtain evidence that injectisomes only become active when the bacteria are almost completely enclosed by host cells. These findings provide a novel view on the organisation and regulation of bacterial translocons and may thus open up new strategies to block the function of infectious bacteria.



Sign in / Sign up

Export Citation Format

Share Document