On the generality of methods to obtain single-cell plant suspension cultures

1978 ◽  
Vol 56 (20) ◽  
pp. 2521-2527 ◽  
Author(s):  
D. J. Kubek ◽  
M. L. Shuler

Several techniques employing mechanical, chemical, or enzymatic methods have been suggested for the production of essentially single-cell plant suspension cultures. If single-cell cultures can be obtained, the effects of the media composition on growth can be unambiguously determined. Additionally, such cultures would be amenable to optical and electronic methods for rapidly determining cell mass, number, and volume and could easily be used in experiments on continuous cultivation. Most methods to produce single-cell cultures have been applied to only one or two species. In this paper, these techniques are compared when extended to cultures of Paul's Scarlet Rose (Rosa sp.) cells and soybean cells (Glycine max L.). It is concluded that no technique will generally give sustained disaggregation without affecting the apparent biochemical state of the culture.

1975 ◽  
Vol 53 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Paul G. Arnison ◽  
W. G. Boll

Electrophoretic analyses of isoenzyme patterns were performed with extracts of root, hypocotyl, and cotyledon suspension cultures derived from a single seedling. The enzymes studied included malate, glutamate, and glucose-6-phosphate dehydrogenases; peroxidase; polyphenol oxidase; esterase; acid phosphatase; and leucine amino peptidase. Peroxidase isoenzymes were also detected in the media. The isoenzymatic patterns of the three cultures were different for some enzymes, similar for others, and identical for the rest. The isoenzymatic patterns were recorded on a number of occasions over a period of 3 years and they remained relatively unchanged.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christos Nikolaou ◽  
Kerstin Muehle ◽  
Stephan Schlickeiser ◽  
Alberto Sada Japp ◽  
Nadine Matzmohr ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3084
Author(s):  
Hao Jing ◽  
Zhao Liu ◽  
Seng How Kuan ◽  
Sylvia Chieng ◽  
Chun Loong Ho

Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.


1984 ◽  
Vol 62 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
L. S. Kott ◽  
K. J. Kasha

Somatic embryogenesis was induced in callus previously initiated from immature embryos of barley. These cultures ranged in age from 6 weeks to 30 months. Embryoids were readily initiated from homogenized suspension-grown aggregates when plated on modified B5 media with 2,4-dichlorophenoxyacetic acid. Low concentrations (0.1 and 0.05 mg∙L−1) of abscisic acid promoted further maturation of embryoids, while gibberellic acid (1 mg∙L−1) and kinetin (0.1 mg∙L−1) were used in the media to encourage embryoid germination. The development of somatic embryoids from initiation through maturation and germination is described.


Planta ◽  
2001 ◽  
Vol 212 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Miguel Alfonso ◽  
Inmaculada Yruela ◽  
Susana Almárcegui ◽  
Elena Torrado ◽  
María A. Pérez ◽  
...  

1970 ◽  
Vol 35 (2) ◽  
pp. 331-341 ◽  
Author(s):  
MA Sayem ◽  
M Maniruzzaman ◽  
SS Siddique ◽  
M Al-Amin

The experiment was conducted to investigate the performance of three different genotypes (BARI Sarisha-6, BARI Sarisha-8, and BARI Sarisha-11) in two different media viz., MS and B5 with different concentrations of phytohormone (2, 4-D) for callus induction from uninucleate stage anthers of Brassica and subsequent plant regeneration in MS media with different concentrations of phytohormone (BAP and NAA). Among the genotypes, BARI Sarisha-8 showed the best performance for all the parameters of callus induction. The performance of BARI Sarisha-6 was poor compared to others. Maximum rate of callus induction (%) was observed in MS + 0.5 mg/L 2, 4-D followed by B5 + 0.5 mg/L 2,4-D. The media combination MS + 1.0 mg/L BAP 0.3 mg/L 2,4-D showed the best performance for maintenance of calli. Significant variations were observed among the genotypes and media composition for shoot regeneration. Among the genotypes, BARI Sarisha-8 showed the best performance for shoot regeneration followed by BARJ Sarisha-l1. The genotype BARI Sarisha-8 produced higher percent of shoots/calli and required minimum days for shoot initiation. Higher percent calli without shoot were produced by the genotype BARI Sarisha-6. The media combination MS + 2.0 mg/L BAP + 0.5 mg/L NAA showed the best performance for shoot regeneration and required maximum days for shoot initiation. Keywords: Regeneration; BARI Sarisha-6; BARI Sarisha-8; BARI Sarisha-11; anther culture; phytohormone  DOI: 10.3329/bjar.v35i2.5896Bangladesh J. Agril. Res. 35(2) : 331-341, June 2010


2018 ◽  
Vol 22 (1) ◽  
pp. 78-90 ◽  
Author(s):  
Chotima Böttcher ◽  
◽  
Stephan Schlickeiser ◽  
Marjolein A. M. Sneeboer ◽  
Desiree Kunkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document