Interaction between the guanylate kinase domain of PSD-95 and the proline-rich region and microtubule binding repeats 2 and 3 of tau

Author(s):  
Emmanuel Prikas ◽  
Holly Ahel ◽  
Kristie Stefanoska ◽  
Prita Riana Asih ◽  
Alexander Volkerling ◽  
...  

The microtubule-associated protein tau is a key factor in neurodegenerative proteinopathies and is predominantly found in the neuronal axon. However, somatodendritic localization of tau occurs for a subset of pathological and physiologic tau. Dendritic tau can localize to post-synapses where it interacts with proteins of the post-synaptic density (PSD) protein PSD-95, a membrane-associated guanylate kinase (MAGUK) scaffold factor for organization of protein complexes within the PSD, to mediate downstream signals. The sub-molecular details of this interaction, however, remain unclear. Here, we use interaction mapping in cultured cells to demonstrate that tau interacts with the guanylate kinase (GUK) domain in the C-terminal region of PSD-95. The PSD-95 GUK domain is required and sufficient for a complex with full-length human tau. Mapping the interaction of the MAGUK core on tau revealed the microtubule binding repeats 2 and 3 and the proline-rich region contribute to this interaction, while the N- and C-terminal regions of tau inhibit interaction. These results reveal intramolecular determinants of the protein complex of tau and PSD-95 and increase our understanding of tau interactions regulating neurotoxic signaling at the molecular level.

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1865-1874
Author(s):  
Christina Rosen ◽  
Dale Dorsett ◽  
Joseph Jack

Abstract The DNA-binding protein encoded by the zeste gene of Drosophila activates transcription and mediates interchromosomal interactions such as transvection. The mutant protein encoded by the zeste1 (z1) allele retains the ability to support transvection, but represses white. Similar to transvection, repression requires Zeste-Zeste protein interactions and a second copy of white, either on the homologous chromosome or adjacent on the same chromosome. We characterized two pseudorevertants of z1 (z1-35 and z1-42) and another zeste mutation (z78c) that represses white. The z1 lesion alters a lysine residue located between the N-terminal DNA-binding domain and the C-terminal hydrophobic repeats involved in Zeste self-interactions. The z78c mutation alters a histidine near the site of the z1 lesion. Both z1 pseudorevertants retain the z1 lesion and alter different prolines in a proline-rich region located between the z1 lesion and the self-interaction domain. The pseudorevertants retain the ability to self-interact, but fail to repress white or support transvection at Ultrabithorax. To account for these observations and evidence indicating that Zeste affects gene expression through Polycomb group (Pc-G) protein complexes that epigenetically maintain chromatin states, we suggest that the regions affected by the z1, z78c, and pseudorevertant lesions mediate interactions between Zeste and the maintenance complexes.


2019 ◽  
Author(s):  
S. P. Wickramasinghe ◽  
J. Lempart ◽  
H. E. Merens ◽  
J. Murphy ◽  
U. Jakob ◽  
...  

AbstractThe aggregation and deposition of tau is a hallmark of a class of neurodegenerative diseases called tauopathies. Despite intensive study, cellular and molecular factors that trigger tau aggregation are not well understood. Here we provide evidence for two mechanisms relevant to the initiation of tau aggregation in the presence of cytoplasmic polyphosphates (polyP): changes in the conformational ensemble of monomer tau and noncovalent cross-linking of multiple tau monomers. We identified conformational changes throughout full-length tau, most notably diminishment of long-range interactions between the termini coupled with compaction of the microtubule binding and proline rich regions. We found that while the proline rich and microtubule binding regions both contain polyP binding sites, the proline rich region is a requisite for compaction of the microtubule binding region upon binding. Additionally, both the magnitude of the conformational change and the aggregation of tau are dependent on the chain length of the polyP polymer. Longer polyP chains are more effective at intermolecular, noncovalent cross-linking of tau. These observations provide an understanding of the initial steps of tau aggregation through interaction with a physiologically relevant aggregation inducer.


2019 ◽  
Author(s):  
Kristen McKibben ◽  
Elizabeth Rhoades

AbstractTau is an intrinsically disordered, microtubule-associated protein with a role in regulating microtubule dynamics. Despite intensive research, the molecular mechanisms of taumediated microtubule polymerization are poorly understood. Here we use single molecule fluorescence to investigate the role of tau’s N-terminal domain (NTD) and proline rich region (PRR) in regulating interactions of tau with soluble tubulin. Both full-length tau isoforms and truncated variants are assayed for their ability to bind soluble tubulin and stimulate microtubule polymerization. We describe a novel role for tau’s PRR as an independent tubulin-binding domain with polymerization capacity. In contrast to the relatively weak tubulin interactions distributed throughout the microtubule binding repeats (MTBR), resulting in heterogeneous tau:tubulin complexes, the PRR binds tubulin tightly and stoichiometrically. Moreover, we demonstrate that interactions between the PRR and MTBR are reduced by the NTD through a conserved conformational ensemble. Based on our data, we propose that tau’s PRR can serve as a core tubulin-binding domain, while the MTBR enhances polymerization capacity by increasing the local tubulin concentration. The NTD negatively regulates tubulin-binding interactions of both of these domains. This study draws attention to the central role of the PRR in tau function, as well as providing mechanistic insight into tau-mediated polymerization of tubulin.Significance StatementTau is an intrinsically disordered, microtubule associated protein linked to a number of neurodegenerative disorders. Here we identify tau’s proline rich region as having autonomous tubulin binding and polymerization capacity, which is enhanced by the flanking microtubule binding repeats. Moreover, we demonstrate that tau’s N-terminal domain negatively regulates both binding and polymerization. We propose a novel model for tau-mediated polymerization whereby the proline rich region serves as a core tubulin-binding domain, while the microtubule binding repeats increase the local concentration. Our work draws attention to the importance of the proline rich region and N-terminal domain in tau function, and highlights the proline rich region as a putative target for the development of therapeutics.


1997 ◽  
Vol 8 (2) ◽  
pp. 353-365 ◽  
Author(s):  
B L Goode ◽  
P E Denis ◽  
D Panda ◽  
M J Radeke ◽  
H P Miller ◽  
...  

Tau is a neuronal microtubule-associated protein that promotes microtubule assembly, stability, and bundling in axons. Two distinct regions of tau are important for the tau-microtubule interaction, a relatively well-characterized "repeat region" in the carboxyl terminus (containing either three or four imperfect 18-amino acid repeats separated by 13- or 14-amino acid long inter-repeats) and a more centrally located, relatively poorly characterized proline-rich region. By using amino-terminal truncation analyses of tau, we have localized the microtubule binding activity of the proline-rich region to Lys215-Asn246 and identified a small sequence within this region, 215KKVAVVR221, that exerts a strong influence on microtubule binding and assembly in both three- and four-repeat tau isoforms. Site-directed mutagenesis experiments indicate that these capabilities are derived largely from Lys215/Lys216 and Arg221. In marked contrast to synthetic peptides corresponding to the repeat region, peptides corresponding to Lys215-Asn246 and Lys215-Thr222 alone possess little or no ability to promote microtubule assembly, and the peptide Lys215-Thr222 does not effectively suppress in vitro microtubule dynamics. However, combining the proline-rich region sequences (Lys215-Asn246) with their adjacent repeat region sequences within a single peptide (Lys215-Lys272) enhances microtubule assembly by 10-fold, suggesting intramolecular interactions between the proline-rich and repeat regions. Structural complexity in this region of tau also is suggested by sequential amino-terminal deletions through the proline-rich and repeat regions, which reveal an unusual pattern of loss and gain of function. Thus, these data lead to a model in which efficient microtubule binding and assembly activities by tau require intramolecular interactions between its repeat and proline-rich regions. This model, invoking structural complexity for the microtubule-bound conformation of tau, is fundamentally different from previous models of tau structure and function, which viewed tau as a simple linear array of independently acting tubulin-binding sites.


2019 ◽  
Vol 19 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Zhi-You Cai ◽  
Chuan-Ling Wang ◽  
Tao-Tao Lu ◽  
Wen-Ming Yang

Background:Liver kinase B1 (LKB1)/5’-adenosine monophosphate-activated protein kinase (AMPK) signaling, a metabolic checkpoint, plays a neuro-protective role in the pathogenesis of Alzheimer’s disease (AD). Amyloid-β (Aβ) acts as a classical biomarker of AD. The aim of the present study was to explore whether berberine (BBR) activates LKB1/AMPK signaling and ameliorates Aβ pathology.Methods:The Aβ levels were detected using enzyme-linked immunosorbent assay and immunohistochemistry. The following biomarkers were measured by Western blotting: phosphorylated (p-) LKB1 (Ser334 and Thr189), p-AMPK (AMPKα and AMPKβ1), synaptophysin, post-synaptic density protein 95 and p-cAMP-response element binding protein (p-CREB). The glial fibrillary acidic protein (GFAP) was determined using Western blotting and immunohistochemistry.Results:BBR inhibited Aβ expression in the brain of APP/PS1 mice. There was a strong up-regulation of both p-LKB1 (Ser334 and Thr189) and p-AMPK (AMPKα and AMPKβ1) in the brains of APP/PS1 transgenic mice after BBR-treatment (P<0.01). BBR promoted the expression of synaptophysin, post-synaptic density protein 95 and p-CREB(Ser133) in the AD brain, compared with the model mice.Conclusion:BBR alleviates Aβ pathogenesis and rescues synapse damage via activating LKB1/AMPK signaling in the brain of APP/PS1 transgenic mice.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24149 ◽  
Author(s):  
Jennifer L. Hodges ◽  
Karen Newell-Litwa ◽  
Hannelore Asmussen ◽  
Miguel Vicente-Manzanares ◽  
Alan Rick Horwitz

1992 ◽  
Vol 20 (2) ◽  
pp. 379-382 ◽  
Author(s):  
J. W. Gurd ◽  
I. R. Brown ◽  
N. Bissoon ◽  
S. Cudmore ◽  
B. Ni ◽  
...  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lionel K. K. Tan ◽  
Mark Reglinski ◽  
Daryl Teo ◽  
Nada Reza ◽  
Lucy E. M. Lamb ◽  
...  

AbstractHighly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full-length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole-blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We, therefore, propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full-length SIC permits the development of protective antibodies against all SIC domains.


Sign in / Sign up

Export Citation Format

Share Document