Deformation of Tianjin soft clay and corresponding micromechanism under cyclic loading

2020 ◽  
Vol 57 (12) ◽  
pp. 1893-1902
Author(s):  
Huayang Lei ◽  
Min Liu ◽  
Yan Jiang ◽  
Xiaofang Sun

The deformation of soft clays under cyclic loading is controlled by microfabric changes. Cyclic triaxial tests, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) were conducted to investigate the deformation and the corresponding micromechanism under cyclic loading. The correlations between the microparameters and deformation of Tianjin soft clay are discussed. The deformation increases linearly in the initial compression stage (number of cycles, N < 500), at a decreasing rate in the later shearing stage (N < 5000), and eventually stabilizes when the cyclic stress ratio (CSR) is 0.30. The probability entropy of both the soil particles and pores have a weak correlation with the deformation on the whole, reflecting a fluctuation within a small range in the initial compression stage. The correlations between the median pore diameter, median particle diameter, and specific surface area and the deformation are validated by using the gray correlation method. More specifically, the specific surface area and the deformation are highly correlated in the initial compression deformation stage. The median pore diameter and median particle diameter are highly correlated with deformation in the later shearing deformation stage.

Author(s):  
Yu-guang Zhou ◽  
Dong Li ◽  
Li-jun Wang ◽  
Necati Özkan ◽  
Xiao Dong Chen ◽  
...  

In this study, microemulsion cross-linking treatment was used on food grade potato and maize starches for preparing micro starch particles. Laser diffraction technique was introduced to measure the particle size characteristics, including the median particle diameter (d 50), surface area mean diameter D [3, 2], volume mean diameter D [4, 3] and specific surface area of micro potato and maize starch particles. The volume distributions and number distributions were also analyzed using Mastersizer 2000 Software. The d 50, D [3, 2], D [4, 3] of the potato starch granules were reduced significantly (p < 0.05) after the microemulsion cross-linking reaction and ball-milling treatment. However, the microemulsion cross-linking treatment did not produce significant changes in the particle size characteristics of the maize starch samples.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


2005 ◽  
Vol 284-286 ◽  
pp. 365-368 ◽  
Author(s):  
Yin Zhang ◽  
Yoshiyuki Yokogawa ◽  
Tetsuya Kameyama

The effect of different particle sizes on the flexural strength and microstructure of three different types of hydroxyapatite (HAp) powders was studied. The powder characteristics of laboratory synthesized HAp powder (Lab1 and Lab2) were obtained through a wet milling method, and the median particle size and the specific surface area of powders are different with the dryness period. The median particle sizes of Lab1 and Lab2 are 0.34 µm and 0.74 µm, and the specific surface areas of Lab1 and Lab2 are 38.01 m2/g and 19.77 m2/g. The commercial HAp had median particle size of 1.13 µm and specific surface area of 11.62m2/g. The different powder characteristics affected the slip characteristics, and the flexural strength and microstructure of the sintered porous HAp bodies are also different. The optimum value for the minimum viscosity in these present HAp slip with respect to its solid loading and the optimum amount of the deflocculant were investigated. The flexural strengths of the porous HAp ceramics prepared by heating at 1200°C for 3 hrs in air were 17.59 MPa for Lab1 with a porosity of 60.48%, 10.51 MPa for Lab2 with a porosity of 57.75%, and 3.92 MPa for commercial HAp with a porosity of 79.37%.


Author(s):  
D. Raffaelli ◽  
P. R. Boyle

SynopsisSurveys of the intertidal macrofauna and sediment characters of Nigg Bay, Moray Firth, were carried out between 1981 and 1985. Permanent stations were located at the intersections of a half-kilometre grid covering the entire intertidal area and sampled for infauna, using replicate cores. Estimates were also made of mussel and lugworm densities from quadrats and cast counts respectively. The biomasses of selected species that constitute important resources for higher trophic levels were also estimated. The sediment for each station was analysed for median particle diameter and silt content.The infaunal data were analysed by Detrended Correspondence Analysis. This indicated that tidal height was the most important factor governing the distribution and abundance of the intertidal communities. Sediment characters were only poorly related to distribution patterns.The bay has a rich fauna and is biologically similar to other outer bays of the Moray Firth, which, like Nigg, are important areas for wildfowl and waders. Comparisons of survey data from different years indicate that there are natural cycles in some sediment and biological characters of Nigg Bay.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


2011 ◽  
Vol 467-469 ◽  
pp. 1084-1087
Author(s):  
Fang Wen Li ◽  
San Li Yue ◽  
Song Jiang Ma ◽  
Juan Yang ◽  
Nian Fen Wu ◽  
...  

Modified bamboo-charcoal (MBC) was prepared by Ferric sulfate dipping and microwave radiation with 20~30 mesh bamboo-charcoal (BC) pretreated by water boiling as the support. The original and modified BC were characterized by SEM, FTIR, XRD, BET and BJH. Fluoride removal from simulated drinking water containing fluoride was probed into with MBC. The results indicated that MBC took on minor average pore diameter (1.172nm), major microspores and greater specific surface area (99.891 m2/g). Loaded iron combined with BC by bonds from BC such as H-O-H bond, C-O bond and O-H bond. The increase of fluoride removal after BC being modified suggests that MBC is a more potential defluorinate agent.


Clay Minerals ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 341-353 ◽  
Author(s):  
M. Ziadeh ◽  
B. Chwalka ◽  
H. Kalo ◽  
M. R. Schütz ◽  
J. Breu

AbstractThe potential of platy nanofillers like clays in polymer nanocomposites is mostly determined by their aspect ratio. The degree of improvement that may be achieved in respect to reinforcement, gas-barrier properties and flame retardancy critically depends on the aspect ratio. Thus, increasing the aspect ratio is highly desirable in order to explore the full potential of the clay filler. Mechanical shear stress as generated in the grinding chamber of a stirred media mill (ball mill) induced an efficient exfoliation of highly hydrated and therefore ‘shear-labile’ synthetic Mg-fluorohectorite in aqueous dispersion. The attainable degree of exfoliation can be tuned and controlled through the shear forces applied by changing process parameters such as solid content and grinding media diameter. Characterization and evaluation of the exfoliation efficiency during milling was achieved by combining and cross-validating data obtained by powder X-ray diffraction (XRD), static light scattering (SLS), specific surface area measurements applying the Brunauer-Emmett-Teller (BET) equation, and scanning electron microscopy (SEM). This led to the identification of optimal processing parameters, allowing for control of the degree of exfoliation and, consequently, the aspect ratio of the nanoplatelets. Not surprisingly, besides exfoliation, increasing the magnitude of the shear stress also resulted in some reduction in platelet size.The clay platelets obtained showed a high average aspect ratio (>600), several times greater than that of original synthetic fluorohectorite. The increase of aspect ratio was reflected in a significant enhancement of both specific surface area and cation exchange capacity (CEC) of the external basal surfaces. This method has substantial advantages compared to microfluidizer processing with respect to feasibility, batch size and particle diameter size preservation. The exfoliated nanoplatelets obtained by milling have great potential to improve mechanical properties of polymer layered silicate nanocomposites (PLSN).


Sign in / Sign up

Export Citation Format

Share Document