scholarly journals Effect of bentonite slurry on the function of foam for changing the permeability characteristics of sand under high hydraulic gradients

Author(s):  
Fanlin Ling ◽  
Shuying Wang ◽  
Qinxin Hu ◽  
Shuo Huang ◽  
Zhiyao Feng

During earth pressure balance (EPB) shield tunnelling in sandy ground, not only foam but also other conditioning agents need to be injected to reduce the permeability of muck and avoid water spewing out of the screw conveyor. Permeability tests were carried out to study the permeability characteristics of conditioned sand under high hydraulic gradients. A low bentonite slurry injection ratio (BIR) enhanced the workability of foam-conditioned sand. As the hydraulic gradient increased, the initial permeability coefficient of conditioned sand increased, and the initial stable period became shorter or disappeared. The BIR had a more significant effect on the permeability of conditioned sand than the foam injection ratio (FIR), and this effect gradually weakened as the hydraulic gradient increased. The initial permeability coefficient of the foam-bentonite slurry-conditioned sand decreased by approximately an order of magnitude compared with that of the foam-conditioned sand. With the addition of bentonite slurry, suitable sand conditioning can accept a higher water content (w) and lower FIR, resulting in suitable ranges of w and FIR that are more flexible. Finally, the mechanism of stabilizing foam under the action of bentonite slurry was discussed by considering the interaction between foam bubbles and fine particles.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zengguang Xu ◽  
Xuemin Yang ◽  
Junrui Chai ◽  
Yuan Qin ◽  
Yanlong Li

Chemical and physical clogging frequently occur in tailings dam. The clogging seriously influences the safety of tailings dam. This paper conducts several column experiments to analyse the physical and chemical clogging of the Lixi tailings dam in China. The experiment results of chemical clogging show that average flow velocity and permeability decrease by approximately 50% to 60%. The experiment results of physical clogging show that these values decrease by approximately 50% to 70%. For physical clogging, a higher hydraulic gradient could result in a larger extent of decrease in the permeability coefficient. The permeability did not decrease when the hydraulic gradient was equal to 0.125. The results of chemical clogging column experiments show that ferrous ion solution concentration is disproportional to the permeability coefficient. This scenario can be attributed to the extremely small concentration gradients.


2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anan Zhang ◽  
Jie Yang ◽  
Chuihui Ma ◽  
Lin Cheng ◽  
Liangcai Hu

Purpose The purpose of this paper is to form a numerical simulation method for permeability coefficient that can consider the characteristics of gravel gradation and further explore the effects of indoor test factors and gradation characteristics on the permeability coefficient of gravel. Design/methodology/approach The random point method is used to establish the polyhedral gravel particle model, the discrete element method (DEM) is used to construct the gravel permeability test sample with gradation characteristics and the finite element method is used to calculate the permeability coefficient to form a DEM-computational fluid dynamics combined method to simulate the gravel seepage characteristics. Then, verified by the indoor test results. Based on this method, the influence of sample size, treatment method of oversize particles and the content of fine particles on the permeability coefficient of gravel is studied. Findings For the gravel containing large particles, the larger size permeameter should be used as far as possible. When the permeameter size is limited, the equal weight substitution method is recommended for the treatment method of oversized particles. Compared with the porosity, the pore connectivity has a higher correlation with the permeability coefficient of the sample. Research limitations/implications Insufficient consideration of the movement of gravel particles in the seepage process is also an issue for further study. Originality/value The simulation method described in this paper is helpful for qualitative analysis, quantitative expression of pore size and makes up for the defect that the seepage characteristics in pores cannot be observed in laboratory tests.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Xuanyu Liu ◽  
Kaiju Zhang

Background: Earth pressure balance shield machines are widely used in underground engineering. To prevent ground deformation even disastrous accidents, the earth pressure in soil chamber must be kept balance to that on excavation face during shield tunneling. Therefore, in this paper an advanced control strategy that a least squares support vector machine model-based predictive control scheme for earth pressure balance is developed. Methods: A prediction model is established to predict the earth pressure in chamber during the tunneling process by means of least squares support vector machine technology. On this basis, an optimization function is given which aims at minimizing the difference between the predicted earth pressure and the desired one. To obtain the optimal control actions, an improved ant colony system algorithm is used as rolling optimization for earth pressure balance control in real time. Results: Based on the field data the simulation experiments are performed. The results demonstrate that the method proposed is very effective to control earth pressure balance, and it has good stability. Conclusion: The screw conveyor speed and advance speed are the major factors affecting the earth pressure in chamber. The excavation face could be controlled balance better by adjusting the screw conveyor speed and advance speed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ma Haifeng ◽  
Yao Fanfan ◽  
Niu Xin’gang ◽  
Guo Jia ◽  
Li Yingming ◽  
...  

In order to obtain the mechanical behavior and permeability characteristics of coal under the coupling action of stress and seepage, permeability tests under different confining pressures in the process of deformation and destruction of briquette coal were carried out using the electrohydraulic servo system of rock mechanics. The stress-strain and permeability evolution curves of briquette coal during the whole deformation process were obtained. The mechanical behavior and permeability coefficient evolution response characteristics of briquette coal under stress-seepage coupling are well reflected. Research shows that stress-axial strain curve and the stress-circumferential strain curve have the same change trend, the hoop strain and axial strain effect on the permeability variation law of basic consistent, and the permeability coefficient with the increase of confining pressure and decreases, and the higher the confining pressure, the lower the permeability coefficient, the confining pressure increases rate under the same conditions, and the permeability coefficient corresponding to high confining pressure is far less than that corresponding to low confining pressure. The confining pressure influences the permeability of the briquette by affecting its dilatancy behavior. With the increase of the confining pressure, the permeability of the sample decreases, and the permeability coefficient decreases with the increase of the confining pressure at the initial stage, showing a logarithmic function. After failure, briquette samples show a power function change rule, and the greater the confining pressure is, the more obvious the permeability coefficient decreases.


2020 ◽  
Vol 42 (13) ◽  
pp. 2440-2449
Author(s):  
Xuanyu Liu ◽  
Sheng Xu ◽  
Kaiju Zhang

In order to avoid the safety accidents caused by earth pressure imbalance during shield machine tunneling process, the earth pressure between excavation face and that in chamber must be maintained balance, but it is difficult for practical engineering. Therefore, a data-driven multi-variable optimization method based on dual heuristic programming (DHP) is proposed. First, a cost function with respect to the chamber’s earth pressure is given in light of Bellman’s principle. Then, based on back propagation neural networks (BPNN), the action network, model network and critic network are established that compose the DHP controller. The networks’ weights are updated through the gradient descent algorithm. By minimizing the cost function, the action network utilizes the critic network’s error to optimize the control variables, so that the optimal advance speed, cutter head torque, cutter head speed, total thrust and screw conveyor speed are obtained. Finally, the simulation experiments are carried out, and the results indicate that the method can effectively control the earth pressure balance in chamber and has strong anti-interference ability.


2011 ◽  
Vol 480-481 ◽  
pp. 745-750
Author(s):  
Xiao Li ◽  
Xiao Jiang Su

This article presents a shield’s earth-pressure-balance (EPB) simulation device based on fluid power transmission principle. The device was developed according to the mathematic model of shield’s EPB system. It is composed of load simulation subsystem and screw-conveyor speed control subsystem. With the regulations of the hydraulic parameters in the subsystems, the device is capable of simulating the situations of earth input and output in cutter chamber, as well as the changes of earth property and shield propulsive velocity. Experimental results proved that the working principle of the device is right, the regulation of hydraulic parameters is convenient, and the enhancement of experiment strength is feasible. Therefore, the experiment research expense on shield's EPB system is reduced and the experiment efficiency is increased. The developed device can provide an economical and effective means for the scheme design and characteristics analysis of shield's EPB system.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Deqing Gan ◽  
Xi Yang ◽  
Yunpeng Zhang

The permeability characteristics of iron tailings are one of the important factors affecting the stability of the tailings dam. The permeability properties of undisturbed iron tailings and disturbed iron tailings were analyzed from various aspects such as FC value, gradation, particle size, specific surface area, and interparticle void ratio with water head test in laboratory. The results show that the permeability coefficients of undisturbed iron tailings and disturbed iron tailings are affected by the fine particles content (FC). The threshold of fine content is about 40%. The traditional formulas for calculating the permeability coefficient are applied. But the results are inaccurate. The relationship between permeability coefficient of the iron tailings (undisturbed iron tailings and disturbed iron tailings) and the nonuniform coefficient (Cu), the curvature coefficient (Cc), the average particle size, the weighted average particle size, the specific surface area, and the skeleton void ratio (es) is nonlinear. It is difficult to characterize the change of permeability coefficient when the fine content is large. However, the relationship between permeability coefficient of the iron tailings (undisturbed iron tailings and disturbed iron tailings) and the effective particle size and silt particles void ratio (ef) is linear. A formula was developed for the determination of permeability coefficient of iron tailings by analyzing the effective particle size and silt particles void ratio. And it is more accurate. The permeability coefficients of disturbed samples are slightly larger than the permeability coefficients of undisturbed sample. This is due to the destruction of the sedimentary structure of the tailings and increasing e. Maybe the R in the new formula is affected by the structure of iron tailings. This requires further research.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Weiqiang Qi ◽  
Zhiyong Yang ◽  
Yusheng Jiang ◽  
Zhiyong Liu ◽  
Yinxin Guo ◽  
...  

Shield recovery in water-rich sand strata is a challenging issue in the field of shield tunnel engineering, especially when the end of the shaft cannot be reinforced by jet grouting or freezing or when the shield cannot be supported with a steel sleeve. Therefore, it is important to develop an effective recovery approach and adopt suitable techniques to control the risks. In this study, a new method based on filling the receiving shaft with water is proposed for the underwater recovery of an earth pressure balance (EPB) shield with zero end reinforcement from a metro tunnel in Tel Aviv, Israel. Several additional techniques are used to ensure safe recovery of the shield, including the design of a concrete cradle, drilling of pressure relief holes, control of excavation parameters, screw conveyor sealing, portal sealing, tail sealing, and grouting. Furthermore, according to the actual situation on site, filling the shaft with water to 1 m above the water level in the strata can prevent the fine sand from percolating into the shaft. Before the cutterhead approaches the underground diaphragm wall, the driving attitude should be strictly controlled, and the edge hob should be inspected for wear. The necessary thrust of shield tunneling in the underground diaphragm wall and shaft is calculated theoretically. In order to ensure the deformation control of the underground diaphragm wall and the smooth tunneling of the shield, the thrust of the shield excavating the underground diaphragm wall will not be larger than 12 000 kN, and the penetration degree will be limited to 3 mm/r. Qualitative observations and measurements of surface subsidence in the metro tunnel indicate that these risk mitigation techniques are effective and suitable for the underwater recovery of EPB shields in water-rich sand strata.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Guozhong Dai ◽  
Yanmin Sheng ◽  
Yutao Pan ◽  
Guicai Shi ◽  
Shujin Li

Soil-bentonite cutoff walls are usually used to contain the contaminants of landfills. The pumpability, permeability, and adsorption capability of the slurry are all crucial to the performance of the cutoff wall. In this study, the effect of polyvinyl alcohol (PVA) was used to improve the performance of bentonite slurry. A series of lab tests were conducted to evaluate the pumpability, permeability, and adsorption capacity with different concentrations of PVA treatment. Results show that the addition of PVA can increase the fluidity and pumpable period of slurry, which facilitates the casting and grouting during construction. The addition of PVA also helps to reduce the permeability coefficient of slurry and improve the adsorption capability which enhances the cutoff performance of the walls.


Sign in / Sign up

Export Citation Format

Share Document