scholarly journals The effect of soil inoculants on seed germination of native and invasive species

Botany ◽  
2017 ◽  
Vol 95 (5) ◽  
pp. 469-480 ◽  
Author(s):  
Bailey J. Balshor ◽  
Matthew S. Garrambone ◽  
Paige Austin ◽  
Kathleen R. Balazs ◽  
Claudia Weihe ◽  
...  

Successful reintroduction of native species through ecological restoration requires understanding the complex process of seed germination. Soil microbes play an important role in promoting native establishment and are often added to restoration sites during seed sowing. We tested the role of soil- and lab-grown bacterial inoculants on germination timing and percent germination for 19 species of plants commonly found in coastal California. Each species exhibited a different response to the inoculant treatments, but overall time-to-germination was longer and percent germination was lower with the soil inoculant compared with the control or other treatments. The invasive species in our study had the highest percent germination of all species and germinated faster than all native shrubs. Germination timing was negatively correlated with percent germination and with seed mass. Our results suggest that lab-grown inoculant and chemical treatment are effective at increasing germination in some native species, whereas soil inoculant is not. Given differences in germination timing between native and invasive species, restoration practitioners could consider using herbicide to treat areas seeded with native shrubs immediately following germination of invasive species without harming most natives, although germination timing and herbicides need further study in relation to microbial effects on seed germination.

2019 ◽  
Vol 13 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Jialiang Zhang ◽  
Evan Siemann ◽  
Baoliang Tian ◽  
Wei Huang ◽  
Jianqing Ding

Abstract Aims Seeds of many invasive plants germinate more quickly than those of native species, likely facilitating invasion success. Assessing the germination traits and seed properties simultaneously for introduced and native populations of an invasive plant is essential to understanding biological invasions. Here, we used Triadica sebifera as a study organism to examine intraspecific differences in seed germination together with seed characteristics. Methods We measured physical (volume, mass, coat hardness and coat thickness of seeds) and chemical (crude fat, soluble protein, sugar, gibberellins [GA] and abscisic acid [ABA] of kernels) properties of T. sebifera seeds collected in 2017 from 12 introduced (United States) populations and 12 native (China) populations and tested their germination rates and timing in a greenhouse experiment in China. Furthermore, we conducted an extra experiment in the United States using seeds collected in 2016 and 2017 to compare the effects of study sites (China vs. United States) and seed collection time (2016 vs. 2017) on seed germination. Important Findings Seeds from the introduced range germinated faster than those from the native range. Physical and chemical measurements showed that seeds from the introduced range were larger, had higher GA concentrations and GA:ABA ratio, but lower crude fat concentrations compared to those from the native range. There were no significant differences in seed mass, coat hardness and coat thickness or kernel ABA, soluble protein or sugar concentrations between seeds from introduced vs. native ranges. Germination rates were correlated between United States and China greenhouses but germination rates for populations varied between collection years. Our results suggest that larger seeds and higher GA likely contribute to faster germination, potentially facilitating T. sebifera invasion in the introduced range.


2018 ◽  
Vol 66 (4) ◽  
pp. 331 ◽  
Author(s):  
Congyan Wang ◽  
Kun Jiang ◽  
Bingde Wu ◽  
Jiawei Zhou

Increasing levels of heavy metals are released into ecosystems. The influence of heavy metal pollution on successful invasive species has raised considerable interest, particularly regarding potential allelopathic effects on seed germination and seedling development of native species. Adding heavy metals may alter or even enhance such allelopathic effects of invasive species. The aim of the present study was to address the combined treatments of the invasive species Canada goldenrod (Solidago canadensis L.) leaf extracts and cadmium (Cd) pollution on seed germination and seedling development of the homologous native species lettuce (Lactuca sativa L.). Results showed that the combined treatments of Canada goldenrod leaf extracts and Cd pollution significantly decreased seed germination and seedling development of lettuce compared with the control. In addition, the indices of allelopathic effects for all seed germination and seedling development indices of lettuce were less than zero under the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration). Thus, the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution pose an inhibitory effect on seed germination and seedling development of lettuce. Further, the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration) cause more toxic effects than the combined treatments of low concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration) on all seed germination and seedling development indices of lettuce. Thus, the inhibitory effects of Canada goldenrod on the seed germination and seedling development of co-occurring native species may be intensified at heavy invasion degrees under increased heavy metal pollution. Subsequently, the competitiveness and fitness of native species may be notably decreased via the reduced seed germination and seedling development and then the notorious invader can establish progressively-growing populations in the colonised ecosystems.


2021 ◽  
Author(s):  
Oscar Cruz ◽  
Otilia Reyes ◽  
Sheila F. Riveiro

<p>Forest fires are a global problem that affects almost all parts of the world. Southern Europe has been a fire prone area since prehistoric times. The northwest of the Iberian Peninsula, despite being an area abundant in rainfall, is currently a hotspot for forest fires. Forest fires produce carbon and ash as a result of the combustion of vegetation, these products can affect the germination behavior of plants.</p><p>Due to climate change, forest fires are becoming more severe, more intense and more recurrent, and this context of disturbances facilitates and accelerates the replacement of native species by invasive alien species in many forest ecosystems. For this reason, we propose to compare the role of carbon and ash in the germination of two native species versus two invasive alien species. The two selected native species were <em>Pinus pinaster</em> Aiton and <em>Salix atrocinerea</em> Brot. and the two invasive species <em>Paraserianthes lophanta</em> (Willd.) I.C. Nielsen and <em>Acacia melanoxylon </em>R. Br. For it, 5 concentrations of ash and 1 concentration of carbon from 2 different origins (carbon from the same studied species and carbon from <em>Ulex europaeus</em> L.) were applied to seeds of these species. Mainly it stands out that the control germination of the native species was higher than that of the invasive species and the germination obtained under ash or carbon treatments was always similar or lower than the control germination. The germination obtained with the carbon of the own species was similar to the control germination and significantly higher than that achieved with the carbon of <em>U. europaeus</em>. Germination timing depends on each species studied, and invasive species take longer to complete their germination than native species (30-42 days versus 80-125 days). The carbon of the own species did not modify the germination timing while the carbon of Ulex did it in the two native species.</p><p>Therefore, carbon and ash are two factors that modify the germination behavior of both the native species and the invasive species studied and can be used to manage plant regeneration after forest fire.</p><p><strong>Funding</strong>. This work was supported by the Spanish Ministry of Science, Innovation and Universities, the Castilla y León Regional Government, the Galicia Regional Government and the European Regional Development Fund (ERDF) in the framework of the FIRESEVES (AGL2017-86075-C2-2-R) and WUIFIRECYL (LE005P20) projects and the Competitive Reference BIOAPLIC (ED431C2019/07) and the Strategic Researcher Cluster BioReDeS (ED431E 2018/09).</p>


Author(s):  
Marija Milanović ◽  
Ingolf Kühn ◽  
Petr Pyšek ◽  
Sonja Knapp

AbstractAlien species in urban areas have a large effect on overall species diversity. A suitable metric of flora’s response to environmental change is functional diversity (FD) that refers to the multivariate space of species’ trait compositions, reflecting their ecological niches. We studied how FD changed over 320 years of urbanization in the city of Halle (Saale), Germany. Selected functional traits (related to stress-tolerance, reproduction, competitiveness and phenology) were examined for the difference in FD between native and alien plant species, the latter specifically for archaeophytes, neophytes and invasive species. Functional diversity for each trait was calculated using Rao’s Q index followed by a linear model to test for changes in Rao’s Q over time between the groups. Over the 320 years, overall FD remained constant despite species turnover, but FD significantly increased for neophytes and invasive species compared to native species. Plant height was the only trait showing increase in FD as main effect, while for the other traits examined FD decreased over time. Considering invasive species separately, the majority of traits exhibit a significant increase in FD except for seed mass where it decreased. Finally, FD of multiple functional traits combined decreased over time. This can be due to homogenization of functional trait between native and alien species, as a consequence of habitats becoming more similar and subsequent habitat filtering. Our results demonstrate that during the last three centuries, urbanization influenced plant FD in various ways and may contribute to future uniformity of urban floras and greater invasiveness.


2013 ◽  
Vol 23 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Jessica D. Lubell

There is increased interest in using native plant alternatives to invasive species for landscaping. Several invasive shrubs are used extensively in landscaping since they perform well in challenging landscapes, such as parking lot island plantings, which are dry, nutrient-poor, and sun and heat exposed. This study evaluated the landscape suitability of six underused Connecticut native shrubs [american filbert (Corylus americana), buttonbush (Cephalanthus occidentalis), northern bush honeysuckle (Diervilla lonicera), steeplebush (Spiraea tomentosa), sweet fern (Comptonia peregrina), and sweet gale (Myrica gale)] by planting them in a large commuter parking lot on the University of Connecticut (UConn) campus in Storrs. Two nonnative invasive species, ‘Crimson Pygmy’ japanese barberry (Berberis thunbergii) and ‘Compactus’ winged euonymus (Euonymus alatus), were also planted as controls. Buttonbush, sweet fern, and sweet gale performed as well as controls and had aesthetic quality index (AQI) ratings similar to controls throughout the study, which spanned three growing seasons. These findings were surprising for buttonbush and sweet gale, which are found in the wild occupying predominantly wet areas. Buttonbush plants readily established at the site as indicated by a 930% increase in plant size over the first growing season. Sweet fern and sweet gale produced attractive, dense, and uniform mounds consistently throughout the study. Northern bush honeysuckle and american filbert were slower to establish, but by the second and third year, respectively, plants were highly attractive and had AQI ratings similar to controls. Despite its attractive floral display, steeplebush performed poorly and developed powdery mildew (Sphaerotheca) symptoms in the first and second years, which contributed to a lower AQI compared with controls. Aesthetic quality for american filbert, buttonbush, and steeplebush was reduced because of variation resulting from seed propagation. For certain native species, plants received from the nursery were not robust, which may have had a greater influence on establishment and early performance than their inherent landscape adaptability. This study identified five underused native shrubs that are adaptable and able to replace invasive plants in landscapes.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 456f-457 ◽  
Author(s):  
Ali O. Sari ◽  
Mario R. Morales ◽  
James E. Simon

Echinacea is a medicinal plant native to North America. It was used extensively by native Americans in the treatment of their ailments. It is presently one of the most popular medicinal plants in the United States. Its popularity has created a large market demand for the roots and foliage of the plant. The gathering of echinacea from the wild is leading to the reduction of native populations and the destruction of its genetic diversity. Cultivation of medicinal echinaceas is hindered by a low seed germination. Dormancy breaking studies were done on freshly harvested seeds of Echinacea angustifolia. Seed lots were placed under light at a constant temperature of 25 °C and at alternate temperatures of 25/15 °C for 14/10 h, respectively. Germination was more rapid and uniform and percent germination higher at 25 °C than at 25/15 °C. Seed tap-water soaking, dry heating, and sharp heating alteration did not increase germination. The application of 1.0 mM ethephon (2-chloroethylphosphoric acid) increased seed germination to 94% at 25 °C and 86% at 25/15 °C. Untreated seeds gave 65% germination at 25 °C and 11% at 25/15 °C. The application of 2500 mg·L–1 and 3500 mg·L–1 of GA to dry seeds and 2500 mg·L–1 to seeds that have been soaked under tap water and then dried increased germination to 82%, 83%, and 83% at 25 °C and 64%, 78%, and 64% at 25/15 °C, respectively.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


Sign in / Sign up

Export Citation Format

Share Document