scholarly journals Evidence of starch accumulation in TBY-2 cells in the presence of auxin

Botany ◽  
2021 ◽  
Author(s):  
Veronica Ambrosini ◽  
Mohammad Issawi ◽  
Catherine Riou

Tobacco cell suspension (TBY-2) is known to produce starch when cultured in medium supplemented with cytokinin or in hormone-free medium. Unexpectedly, TBY-2 cells, continuously cultivated on auxin alone, were also able to accumulate starch at the beginning of stationary growth phase with a yield of 9.22 ± 0.68 percent. This starch production was strongly correlated with a 25-fold increase in starch synthase activity. Moreover, this TBY-2 line was able to produce an amylopectin-rich starch with a ratio amylopectin over amylose of 2.7 which also linked to typical small granules (size around 1.4 µm). According to our preliminary results, this plant cell suspension could produce a low-cost amylopectin rich starch needed in the food industry for production of edible film or bioplastic without impacts from climate or season changes.

2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1084
Author(s):  
Ivan N. Ivanov ◽  
Vilém Zachleder ◽  
Milada Vítová ◽  
Maria J. Barbosa ◽  
Kateřina Bišová

An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1–2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 646
Author(s):  
Victor Gomes Lauriano Souza ◽  
Marta M. Alves ◽  
Catarina F. Santos ◽  
Isabel A. C. Ribeiro ◽  
Carolina Rodrigues ◽  
...  

This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.


2008 ◽  
Vol 74 (15) ◽  
pp. 4847-4852 ◽  
Author(s):  
Anastasia Matthies ◽  
Thomas Clavel ◽  
Michael Gütschow ◽  
Wolfram Engst ◽  
Dirk Haller ◽  
...  

ABSTRACT The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.


2008 ◽  
Vol 3 (11) ◽  
pp. 1398-1406 ◽  
Author(s):  
Stephanus J. Ferreira ◽  
Jens Kossmann ◽  
James R. Lloyd ◽  
Jan-Hendrik Groenewald

2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Jana Šefčovičová ◽  
Jan Tkac

AbstractMicrobial cell biosensors, where cells are in direct connection with a transducer enabling quantitative and qualitative detection of an analyte, are very promising analytical tools applied mainly for assays in the environmental field, food industry or biomedicine. Microbial cell biosensors are an excellent alternative to conventional analytical methods due to their specificity, rapid detection and low cost of analysis. Nowadays, nanomaterials are often used in the construction of biosensors to improve their sensitivity and stability. In this review, the combination of microbial and other individual cells with different nanomaterials (carbon nanotubes, graphene, gold nanoparticles, etc.) for the construction of biosensors is described and their applications are provided as well.


2010 ◽  
Vol 8 (1) ◽  
pp. 51 ◽  
Author(s):  
Niurka Meneses ◽  
Guillermo Mendoza-Hernández ◽  
Sergio Encarnación

PLoS Biology ◽  
2008 ◽  
Vol 6 (12) ◽  
pp. e302 ◽  
Author(s):  
Milos Tanurdzic ◽  
Matthew W Vaughn ◽  
Hongmei Jiang ◽  
Tae-Jin Lee ◽  
R. Keith Slotkin ◽  
...  

2009 ◽  
Author(s):  
Marie-Luise Bauersfeld ◽  
Carolin Peter ◽  
Juergen Woellenstein ◽  
Mark Buecking ◽  
Joerg Bruckert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document