scholarly journals Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 646
Author(s):  
Victor Gomes Lauriano Souza ◽  
Marta M. Alves ◽  
Catarina F. Santos ◽  
Isabel A. C. Ribeiro ◽  
Carolina Rodrigues ◽  
...  

This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.

2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Beverages ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 62 ◽  
Author(s):  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Frank R. Dunshea ◽  
Sigfredo Fuentes

Beverages is a broad and important category within the food industry, which is comprised of a wide range of sub-categories and types of drinks with different levels of complexity for their manufacturing and quality assessment. Traditional methods to evaluate the quality traits of beverages consist of tedious, time-consuming, and costly techniques, which do not allow researchers to procure results in real-time. Therefore, there is a need to test and implement emerging technologies in order to automate and facilitate those analyses within this industry. This paper aimed to present the most recent publications and trends regarding the use of low-cost, reliable, and accurate, remote or non-contact techniques using robotics, machine learning, computer vision, biometrics and the application of artificial intelligence, as well as to identify the research gaps within the beverage industry. It was found that there is a wide opportunity in the development and use of robotics and biometrics for all types of beverages, but especially for hot and non-alcoholic drinks. Furthermore, there is a lack of knowledge and clarity within the industry, and research about the concepts of artificial intelligence and machine learning, as well as that concerning the correct design and interpretation of modeling related to the lack of inclusion of relevant data, additional to presenting over- or under-fitted models.


2013 ◽  
pp. 169-172
Author(s):  
Erika Sulyok ◽  
Györgyi Bró ◽  
János Tamás

By guess, annual volume of milk whey is 185–190 million tons and this volume probably will increase next years. Whey has significant biochemical oxygen demand due to its high organic matter content so whey as sewage is one of the most pollutant by-products in the food industry. Apart from environmental pollution, benefit of several whey constituents for human health is another reason to utilize whey. Corn and potato, as well as the processing of milk in the food industry in large quantities of by-products generated by low cost, substantial quantities of starch and lactic acid, which are due to high biological oxygen demand are considered as hazardous waste. Some of them are destroyed sewage storage tanks, and those products are excellent substrates for the growth of microorganisms could be. The traditional nutrient solution optimization methods are solution and time-consuming and are not able to determine the real optimum because of the interaction of factors involved.


Author(s):  
Amirhossein Abedini ◽  
Adel Mirza Alizadeh ◽  
Aida Mahdavi ◽  
S. Amirhossein Golzan ◽  
Mahla Salimi ◽  
...  

: By-products from the food sector now have a wide range of applications. Low-cost raw materials, followed by low-cost goods, are regarded as one of the sectors’ top goals. Because of its economic relevance, reduced price, and nutrients such as protein, fiber, carbs, and antioxidants, oilseed cakes (OCs) have found a desirable place in livestock and poultry feed. Furthermore, because the cake has the same desirable nutrients, its usage in the food business is unavoidable. However, its use in this sector is not simply for nutritious purposes and has it has different impacts on flavor, texture, color, and antioxidant qualities. Therefore, as a result of its desirable qualities, the cake can be more useful in extensive applications in the food business, as well as in the manufacture of supplements and novel foods. The current review looks at the reapplications of byproducts obtained from oilseeds (soybean, sunflower, sesame, canola, palm kernel, peanut, mustard, and almond) in the food sector in the future. Furthermore, allergenicity, toxicity, antinutritional compounds, and techniques of extracting cakes from oilseeds have been discussed.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2403
Author(s):  
Karina Dyasti Hari ◽  
Coralia V. Garcia ◽  
Gye-Hwa Shin ◽  
Jun-Tae Kim

Pectin-based antibacterial bionanocomposite films were prepared by crosslinking with calcium chloride (CaCl2) and mixing with zinc oxide nanoparticles (ZnO-NPs) at various concentrations (0.5%, 1%, and 1.5% w/w, based on pectin). Crosslinking with 1% CaCl2 significantly (p < 0.05) improved the tensile strength of the pectin films, although their elongation at break was decreased. The UV-light barrier property of the pectin/ZnO bionanocomposite films was significantly (p < 0.05) improved with increasing ZnO-NP concentrations. In addition, the bionanocomposite films incorporating 1.5% ZnO-NPs showed excellent antibacterial effects against both Escherichia coli and Staphylococcus aureus, inhibiting over 99% of the bacteria. Therefore, the developed crosslinked pectin/ZnO bionanocomposite films show great potential as active packaging materials with excellent UV-blocking and antibacterial properties.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1193
Author(s):  
Chen Li ◽  
Jiliu Pei ◽  
Shengyu Zhu ◽  
Yukang Song ◽  
Xiaohui Xiong ◽  
...  

Chitosan/peptide films were prepared by incorporating peptides (0.4%, w/v) from soy, corn and caseins into chitosan films. The presence of peptides significantly affected the physical, antibacterial and antioxidative properties of chitosan films. Among these films, those containing corn peptide showed the best water vapor barrier properties, and the tensile strength and elongation at break increased to 24.80 Mpa and 23.94%, respectively. Characterization of surface hydrophobicity and thermal stability suggested the strongest intermolecular interactions between corn peptides and chitosan. Moreover, films containing casein peptides showed the highest antibacterial activity and radical scavenging activity. The DPPH scavenging rate of films containing casein peptides reached 46.11%, and ABTS scavenging rate reached 66.79%. These results indicate the chitosan/peptide films may be promising food packaging materials.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13532-13542 ◽  
Author(s):  
Ashwath Narayana ◽  
Sachin A. Bhat ◽  
Almas Fathima ◽  
S. V. Lokesh ◽  
Sandeep G. Surya ◽  
...  

An OFET-based CO gas sensor has been demonstrated where ZnO NPs realized by an inexpensive, environmentally friendly method have been employed as an active medium.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 887 ◽  
Author(s):  
Agne Katileviciute ◽  
Gediminas Plakys ◽  
Aida Budreviciute ◽  
Kamil Onder ◽  
Samar Damiati ◽  
...  

Recently more consideration has been given to the use of renewable materials and agricultural residues. Wheat production is increasing yearly and correspondingly, the volume of by-products from the wheat process is increasing, as well. It is important to find the use of the residuals for higher value-added products, and not just for the food industry or animal feed purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran description. The low-cost of wheat bran and its composition assortment provides a good source of substrate for various enzymes and organic acids production and other biotechnological applications. The main purpose of this review article is to look into recent trends, developments, and applications of wheat bran.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6983
Author(s):  
Abdullah M. Abdo ◽  
Amr Fouda ◽  
Ahmed M. Eid ◽  
Nayer M. Fahmy ◽  
Ahmed M. Elsayed ◽  
...  

The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3–14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1417
Author(s):  
Serena Carpentieri ◽  
Farid Soltanipour ◽  
Giovanna Ferrari ◽  
Gianpiero Pataro ◽  
Francesco Donsì

Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.


Sign in / Sign up

Export Citation Format

Share Document