Effect of different sediment dewatering techniques on subsequent particle sizes in industrial derived effluent

2020 ◽  
Vol 47 (10) ◽  
pp. 1145-1153 ◽  
Author(s):  
M. Alimohammadi ◽  
H.A. Tackley ◽  
C.B. Lake ◽  
I. Spooner ◽  
T.R. Walker ◽  
...  

A paucity of literature has compared geotextile dewatering methods to more conventional dewatering methods (i.e., centrifuge, sedimentation) in the context of how geotextile dewatering performs at reducing particulate matter in dewatering effluent. Particulate matter is the primary source of inorganic and organic contaminants (i.e., dioxins and furans) in an unconsolidated sediment (estimated 577 000 m3) that has accumulated in a wastewater stabilization basin in Nova Scotia, Canada. Physical and chemical properties of contaminated sediment were initially characterized, and subsequent laboratory experiments were carried out for three common dewatering methods: sedimentation, centrifugation, and geotextile filtration. Filtrate quality of suspended solids (number, particle size distribution of particles) was examined for differences based on three dewatering techniques assessed. All three methods provided effective removal of particulate matter during dewatering, but geotextile dewatering could be a more cost-effective and practical solution for dewatering of these sediments.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.


2021 ◽  
Author(s):  
Mahdi Hosseini Bafghi ◽  
Razieh Nazari ◽  
Majid Darroudi ◽  
Mohsen Zargar ◽  
Hossein Zarrinfar

Abstract Biosynthesis of nanoparticles can stand as a replacement for the available chemical and physical methods by offering new procedures as green syntheses that have proved to be simple, biocompatible, safe, and cost-effective. Considering how nanoparticles with a size of 1 to 100 nanometers contain unique physical and chemical properties, recent reports are indicative of observing the antifungal qualities of selenium nanoparticles (Se-NPs). Recently, the observance of antifungal resistance towards different species of these fungi is often reported. Therefore, due to the antifungal effects of biological nanoparticles, this study aimed to investigate the exertion of these nanoparticles and evaluate their effects on the growth of fungal pathogens. Se-NPs were biosynthesized by the application of wet reduction method, which included specific concentrations of Aspergillus flavus and Candida albicans. The presence of nanoparticles was confirmed by methods such as UV-Vis spectroscopy, FT-IR analysis, and FESEM electron microscope that involved FESEM and EDAX diagram. The fungal strains were cultured in sabouraud dextrose agar medium to perform the sensitivity test based on the minimum inhibitory concentration (MIC) method in duplicate. The utilization of Se-NPs at concentrations of 1 µg/ ml and below resulted in zero growth of fungal agents. However, their growth was inhibited by antifungal drugs at concentrations of 2 µg/ ml and higher. Based on the obtained results, biological nanoparticles produced by fungal agents at different concentrations exhibited favorable inhibitory effects on the growth of fungal strains.


2021 ◽  
pp. 10-24
Author(s):  
C. R. Abah ◽  
C. N. Ishiwu ◽  
J. E. Obiegbuna ◽  
E. F. Okpalanma ◽  
C. S. Anarado

Quality cassava(Manihotesculentus, Crantz) flour is often influenced by process variables such as slice weight and soaking time which may affect its nutritional quality. In this study, the effect of process variables (slice weight and soaking time) on quality of cassava flour was carried out. Cassava root was peeled, washed and cut into varied sizes (25.86 - 54.14 g) and soaked at varied time (7.03 - 40.97 h). The proximate composition, physical and chemical properties of the flour were carried out using standard methods. The result in our findings showed that slice weight and soaking time had significant increase (p<0.05) on the proximate and physico-chemical properties of the flour.The amylose and amylopectin content of the flour increased with increasing soaking time while the hydrogen cyanide content decreased with increase in soaking time. Overall, the quality cassava flour displayed desirable properties for its incorporation into baked goods.


2020 ◽  
Vol 1 (2) ◽  
pp. 7-16
Author(s):  
Winda Amilia ◽  
Andrew Setiawan Rusdianto ◽  
Arma Dwi Novemi

The amount of mango production in Indonesia is quite high, but the quality of postharvest mangoes is still quite low. The quality of the fruit will decline due to contamination; one of the contaminants is fungi. The way to reduce the damage of postharvest products is by coating applications. The purpose of this study was to study the physical, chemical and antifungal activities of harumanis mangoes’s quality which had been given coating during storage that could cause postharvest losses of harumanis mangoes. There are 3 treatments, each of them are respectively the provision of corn based coating  6% tobacco extract, 8% tobacco extract and 10% tobacco extract. The physical and chemical properties of the antifungal coating of tobacco extract made from corn coating for post-harvest damage on harumanis mangoes were obtained by weight loss, texture, colour, respiration rate, vitamin C and total dissolved solid. Preventing coating can prevent damage after harvest and protect the harumanis mango; therefore the quality of the mangoes can be maintained. The best results from the priority with the largest diameter inhibition zone were given corn starch 10% tobacco extract. Then the higher the concentration of extract used, the greater the diameter of the inhibition zone obtained. Based on all the tests performed (physical, chemical, and antifungal) the best treatment from the treatment was obtained that consisted of mangoes with antifungal layers of corn starch 10% tobacco extract. Because the P3 obtained the best results in maintaining physical, chemical content and fungi for 15 days.


2004 ◽  
pp. 79-90
Author(s):  
Vesna Vratusa

Efficient nursery production of woody plants, as well as the level of their successful application in urban green spaces, greatly depends upon properties of substrates in which these individuals grow, develop and endure. Furthermore, quality of substrate does not only affect the quality of future product (plant individual or green space), but distinctly determines its price. This element, extremely significant for all countries in transition, thus Serbia as well, commands finding ways of making qualitative, but least expensive substrate. The most logical solution is to use mixtures/substrates of precisely defined properties, composed of domestic components. Results presented in this paper imply that it is possible to create precisely such standard mixtures from domestic resources at relatively low cost, adjusted to needs of particular species, which would ultimately lead to successful, non-expensive nursery production and application of produced stock, both on domestic and foreign markets.


2021 ◽  
Vol 12 (5) ◽  
pp. 6557-6579

The introduction of inorganic and organic pollutants into water bodies has become a serious issue globally. The waste streams released from the textile, plastic, leather, paper, pharmaceutical, and food industries introduce different natural and synthetic dyes into the aquatic system. Nanomaterials play a significant role in the photocatalytic degradation of dyes present in wastewater. Inorganic metal oxide nanoparticles have many improved physical and chemical properties and attracted much attention in photocatalytic activities. Dyes have been released in our aquatic bodies due to many anthropogenic activities and caused life-threatening problems. Various conventional methods were reported to remove dyes from water and wastewater; the photocatalytic method is one of the efficient and cost-effective. The present review article includes detailed information on photocatalysis, the potential of metal oxide and their composite materials as photocatalysts in the degradation of toxic dyes, and some common synthetic and characterization methods used for metal oxide-based nanoparticles.


FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1844
Author(s):  
Guilherme Giesel ◽  
Martha Andreia Brand ◽  
Flaviana Reis Milagres ◽  
Renato Augusto Pereira Damasio

In pulp production, wood in logs is stored for periods that can range from a few weeks to several months. During storage, changes in the wood properties that affect the pulping process and the quality of the pulp may occur. The objective of this study was to determine the ideal timing of wood storage in logs by evaluating the variations (a) in the chemical properties of wood (b) in the parameters of the pulping process and (c) the quality of the Pinus taeda pulp. Logs were stored in an industrial courtyard for 30, 60, 90, 120 and 150 days. In each storage period, the physical and chemical properties of the wood, the cooking parameters, and the properties of the pulp were analyzed. The chemical properties of wood varied throughout storage, but only the solubility in sodium hydroxide showed a positive and significant correlation with storage time. In pulping, the yield and tailings had an inversely proportional correlation with the storage time, while the organic and total solids content had a positive correlation. As for cellulose quality, arabinan and soluble lignin contents did not vary during storage. The mannan content had a positive and significant correlation with the storage time. Taking into account all the variables analyzed, the storage time of P. taeda logs should be up to 30 days.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hao Liu ◽  
Bing Xie ◽  
Yue-lin Qin

The physical and chemical properties such as particle size, montmorillonite content, swelling degree, water absorption, and blue absorption of A, B, and C bentonites were studied under laboratory conditions. The effects of adding different quality and different proportion of bentonite on falling strength, compression strength, and shock temperature of green pellet were investigated. The experimental results show that the montmorillonite content, water absorption, and methylene blue absorption of bentonite-B are the highest. And the quality of bentonite-B is the best, followed by bentonite-C and bentonite-A poor quality. When the amount of bentonite-B reduced from 1.5% to 1.0%, the strength of green pellets and the shock temperature both decrease. As the same proportion of A, B, and C bentonites, the green-ball strength and shock temperature are as follows: bentonite-A > bentonite-B > bentonite-C.


Sign in / Sign up

Export Citation Format

Share Document