Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans and comparison of their effects with antifungal drugs

Author(s):  
Mahdi Hosseini Bafghi ◽  
Razieh Nazari ◽  
Majid Darroudi ◽  
Mohsen Zargar ◽  
Hossein Zarrinfar

Abstract Biosynthesis of nanoparticles can stand as a replacement for the available chemical and physical methods by offering new procedures as green syntheses that have proved to be simple, biocompatible, safe, and cost-effective. Considering how nanoparticles with a size of 1 to 100 nanometers contain unique physical and chemical properties, recent reports are indicative of observing the antifungal qualities of selenium nanoparticles (Se-NPs). Recently, the observance of antifungal resistance towards different species of these fungi is often reported. Therefore, due to the antifungal effects of biological nanoparticles, this study aimed to investigate the exertion of these nanoparticles and evaluate their effects on the growth of fungal pathogens. Se-NPs were biosynthesized by the application of wet reduction method, which included specific concentrations of Aspergillus flavus and Candida albicans. The presence of nanoparticles was confirmed by methods such as UV-Vis spectroscopy, FT-IR analysis, and FESEM electron microscope that involved FESEM and EDAX diagram. The fungal strains were cultured in sabouraud dextrose agar medium to perform the sensitivity test based on the minimum inhibitory concentration (MIC) method in duplicate. The utilization of Se-NPs at concentrations of 1 µg/ ml and below resulted in zero growth of fungal agents. However, their growth was inhibited by antifungal drugs at concentrations of 2 µg/ ml and higher. Based on the obtained results, biological nanoparticles produced by fungal agents at different concentrations exhibited favorable inhibitory effects on the growth of fungal strains.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.


2021 ◽  
Vol 12 (5) ◽  
pp. 6557-6579

The introduction of inorganic and organic pollutants into water bodies has become a serious issue globally. The waste streams released from the textile, plastic, leather, paper, pharmaceutical, and food industries introduce different natural and synthetic dyes into the aquatic system. Nanomaterials play a significant role in the photocatalytic degradation of dyes present in wastewater. Inorganic metal oxide nanoparticles have many improved physical and chemical properties and attracted much attention in photocatalytic activities. Dyes have been released in our aquatic bodies due to many anthropogenic activities and caused life-threatening problems. Various conventional methods were reported to remove dyes from water and wastewater; the photocatalytic method is one of the efficient and cost-effective. The present review article includes detailed information on photocatalysis, the potential of metal oxide and their composite materials as photocatalysts in the degradation of toxic dyes, and some common synthetic and characterization methods used for metal oxide-based nanoparticles.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eric H. Jung ◽  
David J. Meyers ◽  
Jürgen Bosch ◽  
Arturo Casadevall

ABSTRACTSimilarities in fungal and animal cells make antifungal discovery efforts more difficult than those for other classes of antimicrobial drugs. Currently, there are only three major classes of antifungal drugs used for the treatment of systemic fungal diseases: polyenes, azoles, and echinocandins. Even in situations where the offending fungal organism is susceptible to the available drugs, treatment courses can be lengthy and unsatisfactory, since eradication of infection is often very difficult, especially in individuals with impaired immunity. Consequently, there is a need for new and more effective antifungal drugs. We have identified compounds with significant antifungal activity in the Malaria Box (Medicines for Malaria Ventures, Geneva, Switzerland) that have higher efficacy than some of the currently used antifungal drugs. Our best candidate, MMV665943 (IUPAC name 4-[6-[[2-(4-aminophenyl)-3H-benzimidazol-5-yl]methyl]-1H-benzimidazol-2-yl]aniline), here referred to as DM262, showed 16- to 32-fold-higher activity than fluconazole againstCryptococcus neoformans. There was also significant antifungal activity in other fungal species with known antifungal resistance, such asLomentospora prolificansandCryptococcus gattii. Antifungal activity was also observed against a common fungus,Candida albicans. These results are important because they offer a potentially new class of antifungal drugs and the repurposing of currently available therapeutics.IMPORTANCEMuch like the recent increase in drug-resistant bacteria, there is a rise in antifungal-resistant strains of pathogenic fungi. There is a need for novel and more potent antifungal therapeutics. Consequently, we investigated a mixed library of drug-like and probe-like compounds with activity inPlasmodiumspp. for activity against two common fungal pathogens,Cryptococcus neoformansandCandida albicans, along with two less common pathogenic species,Lomentospora prolificansandCryptococcus gattii. We uncover a previously uncharacterized drug with higher broad-spectrum antifungal activity than some current treatments. Our findings may eventually lead to a compound added to the arsenal of antifungal therapeutics.


2021 ◽  
Vol 7 (3) ◽  
pp. 209
Author(s):  
Linda C. Horianopoulos ◽  
James W. Kronstad

The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.


2011 ◽  
Vol 492 ◽  
pp. 160-163
Author(s):  
Cai Xia Li ◽  
Qing Lv ◽  
Jie Song ◽  
Dan Yu Jiang ◽  
Qiang Li

Nano-sheets are two-dimensional sheet materials exfoliated from the inorganic layered compounds by various physical and chemical methods. Their unique characteristics insertion reaction and excellent physical and chemical properties have attracted more and more researchers' widespread interests. Selecting quartz glass as the substrate, using layer by layer self-assembly technology, different nano-films materials are prepared. UV/Vis spectroscopy confirmed nano-films materials have been successfully assembled using LBL self-assembly technique. Raman spectrum are mainly used to analyze and characterize the structure of nano-films materials.


2020 ◽  
Vol 47 (10) ◽  
pp. 1145-1153 ◽  
Author(s):  
M. Alimohammadi ◽  
H.A. Tackley ◽  
C.B. Lake ◽  
I. Spooner ◽  
T.R. Walker ◽  
...  

A paucity of literature has compared geotextile dewatering methods to more conventional dewatering methods (i.e., centrifuge, sedimentation) in the context of how geotextile dewatering performs at reducing particulate matter in dewatering effluent. Particulate matter is the primary source of inorganic and organic contaminants (i.e., dioxins and furans) in an unconsolidated sediment (estimated 577 000 m3) that has accumulated in a wastewater stabilization basin in Nova Scotia, Canada. Physical and chemical properties of contaminated sediment were initially characterized, and subsequent laboratory experiments were carried out for three common dewatering methods: sedimentation, centrifugation, and geotextile filtration. Filtrate quality of suspended solids (number, particle size distribution of particles) was examined for differences based on three dewatering techniques assessed. All three methods provided effective removal of particulate matter during dewatering, but geotextile dewatering could be a more cost-effective and practical solution for dewatering of these sediments.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sachin C. Deorukhkar ◽  
Santosh Saini ◽  
Stephen Mathew

The very nature of infectious diseases has undergone profound changes in the past few decades. Fungi once considered as nonpathogenic or less virulent are now recognized as a primary cause of morbidity and mortality in immunocompromised and severely ill patients.Candidaspp. are among the most common fungal pathogens.Candida albicanswas the predominant cause of candidiasis. However, a shift toward non-albicans Candidaspecies has been recently observed. These non-albicans Candidaspecies demonstrate reduced susceptibility to commonly used antifungal drugs. In the present study, we investigated the prevalence of non-albicans Candidaspp. amongCandidaisolates from various clinical specimens and analysed their virulence factors and antifungal susceptibility profile. A total of 523Candidaspp. were isolated from various clinical specimens. Non-albicans Candidaspecies were the predominant pathogens isolated. Non-albicans Candidaspecies also demonstrated the production of virulence factors once attributed toCandida albicans. Non-albicans Candidademonstrated high resistance to azole group of antifungal agents. Therefore, it can be concluded that non-albicans Candidaspecies have emerged as an important cause of infections. Their isolation from clinical specimen can no longer be ignored as a nonpathogenic isolate nor can it be dismissed as a contaminant.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Maria K. Cherepivska ◽  
Roman V. Prihod’ko

Effectiveness of photocatalytic degradation of phenol in aqueous solution using semiconductor oxides (SO) prepared by a sol-gel method was examined. The physical and chemical properties of synthesized catalysts were investigated by X-ray diffraction (XRD), diffuse reflectance UV-Vis spectroscopy (DRS), and N2-adsorption measurements. The optimal conditions of the photocatalytic degradation of phenol using prepared titanium dioxide sample were defined.


2021 ◽  
Vol 9 (3) ◽  
pp. 500 ◽  
Author(s):  
Priyanka Bapat ◽  
Gurbinder Singh ◽  
Clarissa J. Nobile

Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.


2019 ◽  
Author(s):  
Ognenka Avramovska ◽  
Meleah A. Hickman

AbstractOrganismal ploidy state and environmental stress impact the mutational spectrum and the mutational rate. The human fungal pathogen Candida albicans, serves as a clinically relevant model for studying the interaction between eukaryotic ploidy and stress-induced mutagenesis. In this study, we compared the rates and types of genome perturbations in diploid and tetraploid C. albicans following exposure to two classes of antifungal drugs, azoles and echinocandins. We measured mutations at three different scales: point mutation, loss-of-heterozygosity (LOH), and genome size changes in cells treated with fluconazole and caspofungin. We find that caspofungin induced higher rates of mutation than fluconazole, likely an indirect result from the stress associated with cell wall perturbations rather than an inherent genotoxicity. Furthermore, we found disproportionately elevated rates of LOH and genome size changes in response to both antifungals in tetraploid C. albicans compared to diploid C. albicans, suggesting that the magnitude of stress-induced mutagenesis results from an interaction between ploidy state and the environment. These results have both clinical and evolutionary implications for how fungal pathogens generate mutations in response to antifungal drug stress, and may facilitate the emergence of antifungal resistance.


Sign in / Sign up

Export Citation Format

Share Document