Influence of mix ratio of potato peel and pig manure on reaction kinetics and methane recovery from anaerobic co-digestion

Author(s):  
Tolulope Adeleye ◽  
Hyeongu Yeo ◽  
Hisham Hafez ◽  
Rajesh Seth ◽  
Nihar Biswas

The potential improvement in methane recovery and reaction kinetics from different mixes of potato peel (PP) and pig manure (PM) in a single stage anaerobic co-digestion/mono-digestion process was investigated in a laboratory study. The highest methane yield of 231 mL/g TCODadded was observed in the 50:50 mix of potato peel and pig manure. Compared to the mono-digested substrates, co-digestion of PP and PM at 75:25, 50:50 and 25:75 synergistically improved methane yield by 17%, 25% and 11%, respectively. The co-digested mixes also produced methane at a faster rate, with the fastest methane production rate occurring at the 50:50 mix. Thus, co-digestion of potato peel and pig manure enhanced the methane yield and reaction kinetics. Hence, co-digestion rather than mono-digestion should be actively considered when a carbon rich waste (such as potato peel) and nutrient rich waste (such as pig manure) are available within reasonable proximity.

2012 ◽  
Vol 512-515 ◽  
pp. 444-448 ◽  
Author(s):  
Sumeth Dechrugsa ◽  
Sumate Chaiprapat

The effects of substrate mix ratio and inoculum/substrate ratio (ISR) on biochemical methane potential of para-grass (PG) and pig manure (PM) were investigated in batch test that maintained temperature at 35±1 oC and continuously shaked at 120 rpm. Cumulative methane production data at different mix ratios and ISRs were evaluated and fitted with Gompertz equation to derive methane production potential (mL) and maximum methane production rate (mL/d). The maximum and average methane yields at each respective ISR of 1, 2, 3, and 4 were [413.0, 315.5], [539.7, 455.6], [590.3, 472.5], and [593.1, 473.5] mL/gVSadded. Relationship of ISR and PG mix ratio to specific methane yield were expressed in quadratic regression model. The generated response surface showed that methane yield was elevated at higher ISR and higher PG mix ratio. This suggests a careful investigation at different ISR and substrate mix ratios should be performed in order to develop a realistic biochemical methane potential of anaerobic co-digestion.


1997 ◽  
Vol 35 (8) ◽  
pp. 209-215 ◽  
Author(s):  
Shuzo Tanaka ◽  
Toshio Kobayashi ◽  
Ken-ichi Kamiyama ◽  
Ma. Lolita N. Signey Bildan

Effects of pretreatment on the anaerobic digestion of waste activated sludge (WAS) were investigated in terms of VSS solubilization and methane production by batch experiments. The methods of pretreatment studied are NaOH addition (chemical), heating (thermal) and heating with NaOH addition (thermochemical) to the domestic WAS and to the combined WAS from domestic, commercial and industrial wastewaters. The thermochemical pretreatment gave the best result among three methods in the combined WAS, i.e., the VSS was solubilized by 40-50% and the methane production increased by more than 200% over the control when the WAS was heated at 130°C for 5 minutes with the dose 0.3 g NaOH/g VSS. In the domestic WAS, the VSS solubilization rate was 70-80% but the increase of the methane production was about 30% after thermochemically pretreated. The domestic WAS consists of 41% protein, 25% lipid and 14% carbohydrate on COD basis, and the solubilization rate of protein, which is the largest constituent of the WAS, was 63% in the thermochemical pretreatment. Although the effect of the thermochemical pretreatment on the methane production was higher to the combined WAS than to the domestic WAS, the methane production rate was 21.9 ml CH4/g VSSWAS·day in the domestic WAS and 12.8 ml CH4/g VSSWAS·day in the combined WAS.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 860 ◽  
Author(s):  
Helen Coarita Fernandez ◽  
Diana Amaya Ramirez ◽  
Ruben Teixeira Franco ◽  
Pierre Buffière ◽  
Rémy Bayard

Different methods were tested to evaluate the performance of a pretreatment before anaerobic digestion. Besides conventional biochemical parameters, such as the biochemical methane potential (BMP), the methane production rate, or the extent of solubilization of organic compounds, methods for physical characterization were also developed in the present work. Criteria, such as the particle size distribution, the water retention capacity, and the rheological properties, were thus measured. These methods were tested on samples taken in two full-scale digesters operating with cattle manure as a substrate and using hammer mills. The comparison of samples taken before and after the pretreatment unit showed no significant improvement in the methane potential. However, the methane production rate increased by 15% and 26% for the two hammer mills, respectively. A relevant improvement of the rheological properties was also observed. This feature is likely correlated with the average reduction in particle size during the pretreatment operation, but these results needs confirmation in a wider range of systems.


2006 ◽  
Vol 54 (9) ◽  
pp. 221-227 ◽  
Author(s):  
Y. Yoneyama ◽  
A. Nishii ◽  
M. Nishimoto ◽  
N. Yamada ◽  
T. Suzuki

Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid–liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 °C, the optimal temperature for sludge settling and the color suppression was found to be between160–170 °C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 °C for 30 minutes) and polymer-dosed solid–liquid separation. In the UASB treatment with a CODCr loading of 11.7 kg/m3/d and water temperature of 32.2 °C, the CODCr level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (CODCr removal rate of 75.9%), and the methane production rate per CODCr was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (CODCr in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 °C). At the CODCr loading of 1.9 kg/m3/d, the methane production rate per CODCr was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a CODCr loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.


2018 ◽  
Vol 2 (1) ◽  
pp. 18-22
Author(s):  
Rafiqqah Mohamad Sabri ◽  

In this research, sago mill effluent was treated using anaerobic sequencing batch reactor (ASBR). Seven HRT from 10 to 1.5 days were tested to evaluate the methane production from sago mill effluent. The findings revealed the highest methane production rate was found at 1.288 L CH4/L reactor. d under HRT of 2 days The results showed that COD removals decreased from 70% to 47% as HRT was reduced from 10 to 2 days. The HRT 1.5 days was found critical for the studied system, which leads to decreased in methane production, yield and COD removal. Overall, ASBR was capable to treat sago mill effluent in producing methane by means of anaerobic digestion.


Sign in / Sign up

Export Citation Format

Share Document