Effects of Microbially Induced Carbonate Precipitation on Diffuse Double Layer and Particle Fabric of Oil Sands Fine Tailings

Author(s):  
Qianwen Liu ◽  
Brina Montoya

Microbially induced carbonate precipitation (MICP) is a sustainable biological process that catalyzes carbonate mineral precipitation within geomaterials. This study evaluates the performance and mechanisms of the MICP treatment for flocculating the oil sands fine tailings (FT). Column tests showed that the untreated FT did not decant during the 31 days. However, the MICP technique shortened the dewatering process. To elucidate the mechanisms of the MICP-induced flocculation of the FT, the diffuse double layer (DDL) thickness and microstructure of the specimens were evaluated. Three chemical equilibrium scenarios that gradually considered the MICP-biochemical reactions were explored to analyze the change of the DDL thickness. The results showed that increasing of ionic strength by urea hydrolysis decreased the DDL thickness. The fabric observation indicated that the specimens with the most calcium carbonate precipitation had the densest fabric. In summary, the MICP technique densified the fabric of FT via ureolysis process and precipitating minerals.

2020 ◽  
Author(s):  
Jennifer Zehner ◽  
Anja Røyne ◽  
Pawel Sikorski

Microbial-induced calcium carbonate precipitation (MICP) is a biological process inducing biomineralization of CaCO3. This can be used to form a solid, concrete-like material. To be able to use MICP successfully for producing solid materials, it is important to understand the formation process of the material in detail. It is well known, that crystallization surfaces can influence the precipitation process. Therefore, we present in this contribution a systematic study investigating the influence of calcite seeds on the MICP processes. We focus on the pH changes during the crystallization process measured with absorption spectroscopy and on the optical density (OD) signal to analyze the precipitation process. Furthermore, optical microscopy was used to visualize the precipitation processes in the sample and connect them to changes in pH and OD. We show that there is a significant difference in the pH evolution between samples with and without calcite seeds present and that the shape of the pH evolution and the changes in OD can give detailed information about the mineral precipitation and transformations. In the presented experiments we show that amorphous calcium carbonate (ACC) can also precipitate in the presence of initial calcite seeds, which can have consequences for consolidated MICP materials.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0240763
Author(s):  
Jennifer Zehner ◽  
Anja Røyne ◽  
Pawel Sikorski

Microbial-induced calcium carbonate precipitation (MICP) is a biological process inducing biomineralization of CaCO3. This can be used to form a solid, concrete-like material. To be able to use MICP successfully to produce solid materials, it is important to understand the formation process of the material in detail. It is well known that crystallization surfaces can influence the precipitation process. Therefore, we present in this contribution a systematic study investigating the influence of calcite seeds on the MICP process. We focus on the changes in the pH and changes of the optical density (OD) signal measured with absorption spectroscopy to analyze the precipitation process. Furthermore, optical microscopy was used to visualize the precipitation processes in the sample and connect them to changes in the pH and OD. We show, that there is a significant difference in the pH evolution between samples with and without calcite seeds present and that the shape of the pH evolution and the changes in OD can give detailed information about the mineral precipitation and transformations. In the presented experiments we show, that amorphous calcium carbonate (ACC) can also precipitate in the presence of initial calcite seeds and this can have implications for consolidated MICP materials.


2015 ◽  
Vol 42 (11) ◽  
pp. 975-978 ◽  
Author(s):  
Jiaming Liang ◽  
Zhengyang Guo ◽  
Lijun Deng ◽  
Yang Liu

The performance and mechanisms of a microbial induced calcite precipitation (MICP)-assisted mature fine tailings (MFT) consolidation method was assessed. Mature fine tailings samples of 35 wt% and 60 wt% were treated with MICP by ureolysis. The undrained shear strength of treated MFT was measured to evaluate the effects of MICP on MFT consolidation. To investigate the surface interaction mechanisms involved in the process, the size and shape of MFT particles were observed using scanning electron microscopy. The results showed that ureolysis-driven MICP can accelerate raw MFT consolidation, leaving compact sludge with significantly enhanced shear strength within 24 h of the experiment.


2020 ◽  
Vol 10 (13) ◽  
pp. 4538 ◽  
Author(s):  
Johannes Hommel ◽  
Arda Akyel ◽  
Zachary Frieling ◽  
Adrienne J. Phillips ◽  
Robin Gerlach ◽  
...  

Enzymatically induced calcium carbonate precipitation (EICP) is an emerging engineered mineralization method similar to others such as microbially induced calcium carbonate precipitation (MICP). EICP is advantageous compared to MICP as the enzyme is still active at conditions where microbes, e.g., Sporosarcina pasteurii, commonly used for MICP, cannot grow. Especially, EICP expands the applicability of ureolysis-induced calcium carbonate mineral precipitation to higher temperatures, enabling its use in leakage mitigation deeper in the subsurface than previously thought to be possible with MICP. A new conceptual and numerical model for EICP is presented. The model was calibrated and validated using quasi-1D column experiments designed to provide the necessary data for model calibration and can now be used to assess the potential of EICP applications for leakage mitigation and other subsurface modifications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Neerja M. Zambare ◽  
Nada Y. Naser ◽  
Robin Gerlach ◽  
Connie B. Chang

Abstract Microbe-mineral interactions are ubiquitous and can facilitate major biogeochemical reactions that drive dynamic Earth processes such as rock formation. One example is microbially induced calcium carbonate precipitation (MICP) in which microbial activity leads to the formation of calcium carbonate precipitates. A majority of MICP studies have been conducted at the mesoscale but fundamental questions persist regarding the mechanisms of cell encapsulation and mineral polymorphism. Here, we are the first to investigate and characterize precipitates on the microscale formed by MICP starting from single ureolytic E. coli MJK2 cells in 25 µm diameter drops. Mineral precipitation was observed over time and cells surrounded by calcium carbonate precipitates were observed under hydrated conditions. Using Raman microspectroscopy, amorphous calcium carbonate (ACC) was observed first in the drops, followed by vaterite formation. ACC and vaterite remained stable for up to 4 days, possibly due to the presence of organics. The vaterite precipitates exhibited a dense interior structure with a grainy exterior when examined using electron microscopy. Autofluorescence of these precipitates was observed possibly indicating the development of a calcite phase. The developed approach provides an avenue for future investigations surrounding fundamental processes such as precipitate nucleation on bacteria, microbe-mineral interactions, and polymorph transitions.


2018 ◽  
Vol 67 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Masataka Aoki ◽  
Takuya Noma ◽  
Hiroshi Yonemitsu ◽  
Nobuo Araki ◽  
Takashi Yamaguchi ◽  
...  

Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its potential biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreactor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 μmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bioreactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.


Sign in / Sign up

Export Citation Format

Share Document