scholarly journals The geology, petrology, and geochronology of the Archean Côté Gold large-tonnage, low-grade intrusion-related Au(–Cu) deposit, Swayze greenstone belt, Ontario, Canada

2017 ◽  
Vol 54 (2) ◽  
pp. 173-202 ◽  
Author(s):  
Laura R. Katz ◽  
Daniel J. Kontak ◽  
Benoît Dubé ◽  
Vicki McNicoll

The Archean Côté Gold Au(–Cu) deposit is the first large gold deposit discovered in the Swayze greenstone belt of the Abitibi Subprovince. The deposit is a low-grade, large-tonnage type with a combined indicated and inferred resource of 8.65 M oz Au (245.2 t Au). The deposit is hosted by the Chester intrusive complex (CIC), a multiphase, subvolcanic intrusion composed of low-Al tonalite, diorite, and quartz diorite, plus magmatic and hydrothermal breccia bodies. The age of the tonalite and dioritic phases is constrained at 2741–2739 ± 1 Ma using high-precision isotope dilution – thermal ionization mass spectrometry (ID–TIMS) U–Pb zircon geochronology. Although these phases are co-temporal and co-spatial, they appear to be petrogenetically unrelated. The CIC was emplaced into mafic metavolcanic rocks of the Arbutus Formation whose geochemistry reflects a back-arc environment. The tonalite of the CIC is coeval and co-genetic with the felsic to intermediate metavolcanic rocks of the Yeo Formation. Emplacement of the CIC into a shallow crustal level is inferred based on the incorporation of screens and inclusions of the Yeo Formation and is supported by the presence of textures in tonalite and dioritic rocks (e.g., granophyres, miarolitic cavities, and pegmatites), as well as Al-in-hornblende geobarometry results of ≤1.3 ± 0.6 kbars (1 kbar = 100 MPa). The CIC is petrologically similar to other subvolcanic, low-Al tonalite–trondhjemite–diorite intrusions that underlie volcanogenic massive sulphide (VMS)-type deposits and which themselves may contain syn-intrusion mineralization. Several geochemically unrelated dykes and deformation events crosscut and postdate the CIC.

2006 ◽  
Vol 43 (7) ◽  
pp. 967-993 ◽  
Author(s):  
M Melnyk ◽  
D W Davis ◽  
A R Cruden ◽  
R A Stern

Layered gneisses in the Winnipeg River subprovince contain magmatic zircon with U–Pb ages of 3317 ± 9 and 3055 ± 4 Ma at Tannis Lake, and ~3170 and 3255 ± 5 Ma at Cedar Lake, indicating widespread occurrence of Mesoarchean crust. This is in contrast to the well-documented Neoarchean age of the western Wabigoon subprovince. Further geochronology using both SHRIMP (sensitive high resolution ion microprobe) and ID-TIMS (isotope dilution thermal ionization mass spectrometry), combined with structural observations, in the Kenora area and Lake of the Woods greenstone belt show the effects of juxtaposition of these two terranes. Isoclinally folded gneiss north of the subprovince boundary zone near Kenora gives a magmatic age of 2882 ± 2 Ma with 3051 ± 6 Ma inheritance. Ages of syntectonic dykes show that asymmetric refolding of these gneisses occurred between 2717 ± 2 and about 2713 ± 1 Ma. Subsequent regional vertical flattening and horizontal extension are dated at 2708 ± 2 Ma by syntectonic tonalite sheets. These events are broadly coeval with deposition of orogenic sediments in the Warclub Group and a first stage of regional folding (age brackets of 2716–2709 Ma) in the Lake of the Woods greenstone belt to the south. A second stage of folding and regional faulting in the greenstone belt occurred about 2695 ± 4 Ma and is approximately coeval with open upright folding in the Winnipeg River subprovince. These observations are consistent with overthrusting and collapse of a Mesoarchean continental terrane by a juvenile Neoarchean arc terrane over the time span 2717–2695 Ma.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


2020 ◽  
pp. 1-12
Author(s):  
Marek Awdankiewicz ◽  
Ryszard Kryza ◽  
Krzysztof Turniak ◽  
Maria Ovtcharova ◽  
Urs Schaltegger

Abstract Precise U–Pb zircon dating using the chemical abrasion – isotope dilution – thermal ionization mass spectrometry (CA-ID-TIMS) method constrains the age of the Central Sudetic Ophiolite (CSO) in the Variscan Belt of Europe. A felsic gabbro from the Ślęża Massif contains zircon xenocrysts dated at 404.8 ± 0.3 Ma and younger crystals dated at 402.6 ± 0.2 Ma that determine the final crystallization age of the gabbro. An identical age of 402.7 ± 0.3 Ma was determined for plagiogranite from the Nowa Ruda–Słupiec Massif, and plagiogranite from the Braszowice–Brzeźnica Massif yields a similar, but less reliable, age of > 401.2 Ma. The different massifs in the CSO are therefore considered as tectonically dismembered fragments of a single oceanic domain formed at c. 402.6–402.7 Ma (Early Devonian – Emsian). The magmatic activity recorded in the CSO was contemporaneous with the high-temperature/high-pressure metamorphism of granulites and peridotites in the Góry Sowie Massif, separating dismembered parts of the CSO. This suggests geodynamic coupling between the continental subduction recorded in the Góry Sowie and the oceanic spreading recorded in the CSO. Regional geological data indicate that the CSO was obducted before c. 383 Ma, less than 20 Ma after its formation at an oceanic spreading centre. The CSO is shown to be one of the oldest and first obducted among the Devonian ophiolites of the Variscan Belt. The CSO probably originated in an evolved back-arc basin in which the influence of subduction-related fluids and melts increased with time, from negligible during the formation of predominant mid-ocean-ridge-type magmatic rocks to strong at later stages, when rodingites, epidosites and other minor lithologies formed.


Author(s):  
Keith Benn

ABSTRACTThe Kenogamissi complex represents a large exposure of folded Late Archaean crystalline crust exposed within the Abitibi Subprovince, Ontario, Canada. It is composed of an heterogeneous amphibolite-grade orthogneiss unit, and several generations of batholiths and plutons of tonalite, granodiorite and granite composition. Together, the various units represent granitic magmatism during the period from 2740 Ma to 2660 Ma. Structural mapping and petrographic studies were focused on the orthogneiss unit (2723 Ma), on the newly defined Roblin tonalitegranodiorite batholith (ca. 2713 Ma) and on the highly strained metavolcanic rocks within the deformation aureole that surrounds the Kenogamissi complex. Structural analysis indicates that the Kenogamissi complex was emplaced into the greenstones as a dome that caused severe flattening and recumbent F2 refolding of earlier F1 folds in the deformation aureole. Doming is interpreted to be caused by the emplacement and inflation of tonalite-granodiorite batholiths, such as the Roblin Batholith, into the actively folding Swayze greenstone belt. Continued regional folding resulted in F3 refolding of F1 and F2 in the deformation aureole. Continued regional folding also deformed and folded the Kenogamissi complex and resulted in further uplift and emplacement of the complex into the greenstone belt. The early-formed magmatic foliation and compositional layering in the Roblin Batholith were folded by F3 while the batholith was still a crystal mush, and an F3 axial-surface magmatic foliation was locally formed. Folding of the partially molten Roblin Batholith also resulted in the remobilisation of fractionated liquids into shear zones which formed on the limbs of the F3 magmatic folds. Similar structures are present in the orthogneiss unit and are interpreted to represent remobilisation of melts which intruded the orthogneiss at the time of emplacement of the Roblin Batholith. The formation of the dykes on sheared fold limbs may be attributed to increased dilatancy during localised shearing of the crystal mush. Deformation-assisted remobilisation and extraction of fractionated liquids, and the possible transport of the fractionated liquids to higher levels in the crystallising Roblin Batholith, may have played a role in its magmatic differentiation.


2011 ◽  
Vol 48 (2) ◽  
pp. 473-494 ◽  
Author(s):  
Fernando Corfu ◽  
Ebbe H. Hartz

The Liverpool Land – Canning Land region in East Greenland is the central-most basement high in the northeast Atlantic Caledonides. It contains a variety of rocks derived from the whole section of the Caledonian crust, permitting correlations and comparisons of tectonomagmatic events at all crustal levels. Here, we present U–Pb thermal ionization mass spectrometry (TIMS) data combined with field studies suggesting that the region can be divided into distinct tectonostratigraphic domains: (1) The Southern Liverpool Land eclogite terrane with garnet-peridotite and eclogite lenses, the product of a polyorogenic history with a latest-Paleoproterozic and Mesoproterozoic origin, eclogitization at 398 Ma and migmatization at 387 Ma. (2) The migmatitic Mariager Fjord Dome in central Liverpool Land with gneisses that formed leucosome at 409 Ma. Both areas are separated by high-strain zones from (3) the overlying Hurry Inlet plutonic terrane, which consists of metasedimentary rocks first intruded by granodiorite to granite at ca. 440–430 Ma, and, after local deformation, by a major 426–424 Ma granitic to monzonitic suite. (4) Structurally higher, and probably above another high-strain zone, low-grade Neoproterozoic to Cambrian sediments are intruded, by syn-contractional 427 Ma leucogranite. All these units are unconformably overlain by Devonian and younger deposits. Collectively our data document a distinct variation in time for Caledonian magmatism and metamorphism in the various tectonostratigraphic domains, implying that the diverse terranes were juxtaposed after magmatism, and that the gneiss domes of Liverpool Land have a different origin than other nappes of the East Greenland Caledonides.


2020 ◽  
Author(s):  
Laura R. Katz ◽  
Daniel J. Kontak ◽  
Benoît Dubé ◽  
Vicki McNicoll ◽  
Robert Creaser ◽  
...  

Abstract The Archean low-grade, large-tonnage Côté Gold Au(-Cu) deposit is the first large gold deposit discovered in the Swayze greenstone belt, Ontario, Canada. The deposit is hosted by the Chester Intrusive Complex, a low-Al composite, subvolcanic intrusion composed of tonalite, quartz diorite, and diorite that was previously constrained to ca. 2741 to 2739 Ma (U-Pb zircon). Presented here is the first detailed study of the mineralization and related alteration, along with the relative and absolute age (U-Pb, Re-Os) constraints on gold mineralization. The earliest hydrothermal stage is represented by rare Au-bearing amphibole-rich veins and breccias. The main ore stage consists of biotite-rich alteration centered on an Au(-Cu)–bearing magmatic-hydrothermal biotite breccia body with spatially related disseminated biotite and veins of both sheeted and stockwork type. Extensive fracture-controlled and replacement-style Au ± Cu-bearing muscovite alteration overprints biotite-altered rocks in the core of the deposit. Barren fracture-controlled and disseminated epidote alteration is localized to the north of the deposit and above the magmatic-hydrothermal biotite breccia. Late, texturally destructive albite alteration overprints the mineralized hydrothermal alteration in the deposit core. U-Pb isotope dilution-thermal ionization mass spectrometry and laser ablation-inductively coupled plasma-mass spectrometry ages for hydrothermal titanite from amphibole (2745 ± 3 Ma) and albite (2737.5 +2.2/–1.8, 2745 ± 9, and 2736 ± 7 Ma) alteration assemblages constrain hydrothermal activity to ca. 2740 Ma. The timing of gold and sulfide mineralization is also constrained by two Re-Os molybdenite ages of 2736.1 ± 11.4 (biotite alteration) and 2746.8 ± 11.4 Ma (muscovite alteration). These new ages overlap with the ca. 2741 to 2739 Ma magmatism for the Chester Intrusive Complex, thereby suggesting a synintrusion, magmatic-hydrothermal origin for the gold mineralization and related alteration. This is significant, as it represents a new gold metallogenic event in the Abitibi subprovince, for which regional importance remains to be defined. Considering the spatial association of the deposit with a dioritic intrusion and the temporal overlap of igneous activity with alteration (i.e., amphibole, biotite, sericite) and mineralization (i.e., breccias, veins, disseminations), the deposit is interpreted as an Archean magmatic-hydrothermal ore system sharing analogies with Phanerozoic Au-Cu porphyry deposits. It suggests that Archean porphyry-type deposits can form in low-Al composite intrusions, which are known to host Cu-Mo-Au breccia, vein, and disseminated mineralization and underlie temporally and genetically related felsic to intermediate volcanic rocks that host volcanogenic massive sulfide deposits.


1996 ◽  
Vol 33 (11) ◽  
pp. 1520-1533 ◽  
Author(s):  
K. Y. Tomlinson ◽  
R. P. Hall ◽  
D. J. Hughes ◽  
P. C. Thurston

The Beardmore–Geraldton greenstone belt lies between the Wabigoon volcanic arc (Onaman–Tashota terrane) and the Quetico metasedimentary subprovince and thus has an important bearing on the accretionary model that has been proposed for the amalgamation of these terranes. This paper presents geochemical evidence for the petrogenetic affinities of the volcanic units of the western half of the Beardmore–Geraldton greenstone belt. These data suggest that the metavolcanic rocks of the greenstone belt form a series of distinct packages. Trace element data are used to demonstrate the similarities and differences of each unit of lavas and to characterize their source region and likely tectono-magmatic setting. The data indicate that three separate fragments of volcanic crust representing oceanic crust, arc crust, and back-arc crust formed in a small arc system and were juxtaposed prior to collision with the Wabigoon arc. These fragments of crust were then accreted to the Wabigoon arc where sedimentation was followed by thrusting and folding resulting in shortening of the belt. Delamination of the volcanic units is thought to have been responsible for the preservation of just the pillow lava sequence of oceanic crust. Lower crustal or crust–mantle delamination of the Wawa arc and underplating of the Quetico are thought to have been responsible for the late and long-lived, high-grade metamorphic event in the Quetico and such "flake tectonics" are thought to have been an important process in the interaction between the Wabigoon, Quetico, and Wawa subprovinces.


Author(s):  
Henrik Rasmussen ◽  
Lars Frimodt Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, H., & Frimodt Pedersen, L. (1999). Stratigraphy, structure and geochemistry of Archaean supracrustal rocks from Oqaatsut and Naajaat Qaqqaat, north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 65-78. https://doi.org/10.34194/ggub.v181.5114 _______________ Two Archaean supracrustal sequences in the area north-east of Disko Bugt, c. 1950 and c. 800 m in thickness, are dominated by pelitic and semipelitic mica schists, interlayered with basic metavolcanic rocks. A polymict conglomerate occurs locally at the base of one of the sequences. One of the supracrustal sequences has undergone four phases of deformation; the other three phases. In both sequences an early phase, now represented by isoclinal folds, was followed by north-west-directed thrusting. A penetrative deformation represented by upright to steeply inclined folds is only recognised in one of the sequences. Steep, brittle N–S and NW–SE striking faults transect all rock units including late stage dolerites and lamprophyres. Investigation of major- and trace-element geochemistry based on discrimination diagrams for tectonic setting suggests that both metasediments and metavolcanic rocks were deposited in an environment similar to a modern back-arc setting.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 966
Author(s):  
Baptiste Madon ◽  
Lucie Mathieu ◽  
Jeffrey H. Marsh

Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.


Sign in / Sign up

Export Citation Format

Share Document