scholarly journals The variability of Baffin Bay seafloor sediment mineralogy: the identification of discrete glacial sediment sources and application to Late Quaternary downcore analysis

2018 ◽  
Vol 55 (6) ◽  
pp. 620-639 ◽  
Author(s):  
John T. Andrews ◽  
Anna J. Klein ◽  
Kimberly A. Jenner ◽  
Anne E. Jennings ◽  
Calvin Campbell

Quantitative X-ray diffraction (qXRD) mineralogy of bedrock, ice-rafted, and fluvial clasts, 239 seafloor samples (<2 mm), and samples from two long piston cores were used to (i) define regional patterns and sources within Baffin Bay, (ii) evaluate two areas from west Greenland and east Baffin Island in more detail, and (iii) apply these findings to the interpretation of downcore variations in sediment sources. A sediment-unmixing program is used to define surface regional mineral assemblages and to examine changes in sediment sources in cores HU2013029-77PC (southern Baffin Island slope) and HU2008029-8PC (Davis Strait) during Marine Isotope Stages 1 through 3. Distinct regional patterns are observed in the association between the mineralogy of surface sediments and carbonate and basalt bedrock outcrops. Detailed analysis of seafloor samples from the west Greenland troughs and Baffin Island fjords show regional differences in mineralogy, with sediments derived from the Foxe Fold Belt (north-central Baffin Island) being mineralogically distinct from sediments to the north and south. Grain-size spectra from the west Greenland troughs suggested an association between grain-size spectra and mineral assemblages. Sediment unmixing of qXRD data from the two piston cores shows discrete intervals where one or more mineral sources were dominant. However, chronological control is such that it is unclear whether the various ice streams draining into Baffin Bay behaved synchronously.

1987 ◽  
Vol 136 ◽  
pp. 1-25
Author(s):  
N Hald ◽  
J.G Larsen

Data on the Tertiary basalts in the Davis Strait region are reported from two exploration wells drilled by Arco and Mobil on the West Greenland shelf. Hellefisk 1 (67°53 'N, 56°44'W), situated only 60 km east of the mid-line in Davis Strait, penetrated the upper 690 m of a subaeriallava sequence continuous with the onshore volcanics of Disko and situated beneath 2.3 km of Paleocene to Quaternary sediments. The lavas are feldspar microporphyritic tholeiites and mostly unmetamorphosed despite the presence of laumontite and prehnite in the vesicular top zones. Nukik 2 (65°38'N, 54°46'W) penetrated 150 m of hyaloclastites and tholeiitic olivine dolerite sheets, presumably sills, some 200 km further to the south. These vo1canics are also deeply buried and are of unknown extension. The drilled rocks, except for the much altered hyaloclastites in the Nukik 2 well, have low contents of Ti02 (0.99-2.03%), K2O (0.09-0.18%) and P2O5 (0.08-0.21%), La/Sm ratios less than one and 87Sr/86Sr ratios of 0.7032 to 0.7044. Chemically they are related to the MORB-like picrites of Baffin Island rather than the less depleted tholeiites of West Greenland. In both areas the MORB affinity may be related to eruptions through a strongly attenuated lithosphere associated with the opening of Baffin Bay and Davis Strait.


Author(s):  
Peter R. Dawes

Abstract Dawes, P.R. 2006: Explanatory notes to the Geological map of Greenland, 1:500 000, Thule, Sheet 5. Geological Survey of Denmark and Greenland Map Series 2, 97 pp. + map These explanatory notes cover part of North-West Greenland defined by latitudes 75°15'N and 78°N and longitudes 57°W and 73°W, a region with appreciable ice cover. The bedrock is dominated by two Precambrian provinces that extend across Baffin Bay into Canada: the highgrade Archaean-Palaeoproterozoic shield overlain by the intracratonic Mesoproterozoic-?Neoproterozoic Thule Basin. Map units are systematically described and introductory sections cover the physical environment, logistics, data sources and geoscientific research. The crystalline shield embraces seven complexes: three of Archaean age, two of Archaean-?Palaeoproterozoic age and two of Palaeoproterozoic age. Isotopic ages of c. 2900 Ma indicate that Neoarchaean orthogneisses are present in part of the region while the existence of Mesoarchaean crust is indicated by c. 3200 Ma detrital zircons. The high-grade orthogneisses and paragneisses of the Thule mixed-gneiss complex were intruded by two plutonic suites, the Kap York meta-igneous complex at c. 2700 Ma and the Smithson Bjerge magmatic association that includes a major anorthosite body. Subsequent deformation, metamorphism and migmatisation led to the formation of gneisses recognised within the Melville Bugt orthogneiss complex . Palaeoproterozoic sedimentation and volcanism represented by the Prudhoe Land supracrustal complex took place after c . 2250 Ma but had ceased by c. 1985 Ma when the Prudhoe Land granulite complex was emplaced. Rocks within the Lauge Koch Kyst supracrustal complex may correlate with the Palaeoproterozoic Karrat Group of West Greenland. Polyphase deformation with isoclinal folding, and regional metamorphism up to granulite-facies grade, affected the region c. 1900 Ma ago, with cooling until c . 1650 Ma. Extensional faulting, intracratonic basin formation and periods of basaltic magmatism occurred during the last 1000 million years of Proterozoic time. After regional dyking at c . 1630 Ma ( Melville Bugt dyke swarm ) followed by mature peneplanation, the Thule Basin developed as an interior fracture and sag depocentre across the area that is now northernmost Baffin Bay. Defined by the unmetmorphosed Thule Supergroup at least 6 km thick, the basin records fluvial to shallow-marine sedimentation and tholeiitic volcanism at least 1270 million years old. The basin is dissected by the Thule half-graben system dominated by WNW-ESE-trending faults thought to have developed during the final tectono-magmatic period dated at c. 700650 Ma. Conspicuous products of this are a major sill complex ( Steensby Land sill complex ) and a regional dyke swarm that parallels the half-grabens ( Thule dyke swarm ). Fault reactivation is probably related to the late Phanerozoic tectonic evolution of Baffin Bay. In addition to the four metallic commodities included on the map - magnetite, copper, iron suphides, ilmenite - there is potential for gold and other mineralisations. The Neoarchaean magnetite province, traceable for over 400 km through the map region, is spatially the largest in Greenland and it is a correlative of the Mary River iron deposits of Baffin Island, Canada. Several raw materials have potential for local handicraft industries, including soapstone and agate. The region hosts a multi-event glacial and marine Middle-Late Quaternary stratigraphy dating back to at least the Saalian/Illinoian (pre-130 ka B.P.). The entire region was probably overriden by the Inland Ice during the Weichselian/Wisconsinian glacial maximum and deglaciated in the early Holocene, 11 000 to 9000 years ago.


2006 ◽  
Vol 10 ◽  
pp. 45-48 ◽  
Author(s):  
Troels F.D. Nielsen ◽  
Martin Jebens ◽  
Sven M. Jensen ◽  
Karsten Secher

Ultramafic dyke rocks with kimberlitic megacrysts and mantle nodules have been known for decades from the northern part of the Archaean block and adjacent Proterozoic terranes in southern West Greenland (Fig. 1; Escher & Watterson 1973; Goff 1973; Scott 1981; Larsen & Rex 1992; Mitchell et al. 1999). Some of the dykes have proved to be diamondiferous (see Jensen et al. 2004a, b, for exploration results, diamond contents, and references). The c. 600 Ma old dykes werecalled ‘kimberlitic’ by Larsen & Rex (1992), but Mitchell et al. (1999) concluded that they were best referred to a ‘carbonatiteultramafic lamprophyre’ suite (aillikites or melnoites). Mitchell et al. (1999) further suggested that the West Greenland province represents “one of the few bona fide examples of ultramafic lamprophyre which contain diamonds”. Reports on indicator mineral assemblages (Jensen et al. 2004b) and diamond contents (e.g. Hudson Resources Inc. 2005) have re-opened the discussion on the classification of the dykes. The results of an investigation of the Majuagaa dyke (Nielsen & Jensen 2005) are summarised below, together with the preliminary results of a regional investigation of the groundmass minerals of the dykes. It is concluded that dykes in the Maniitsoq region are similar to archetypal, South African, on-craton, Type 1 kimberlites, and that all regions of the West Greenland province of ultramafic magmatism are favourable for diamond exploration.


2020 ◽  
Vol 90 (7) ◽  
pp. 763-775
Author(s):  
John T. Andrews ◽  
Kimberley A. Jenner ◽  
Calvin Campbell

ABSTRACT We evaluate the linkages between lithofacies and mineral composition of late Quaternary sediments along the Baffin Slope for cores 2013029 64, 74, and 77. Four major lithofacies were identified: diamicton (L1), laminated red-brown mud (L2), tan carbonate mud (L3), and brown bioturbated mud (L4). In addition, gold-brown mud (L2a) beds were identified within red-brown mud throughout the Baffin margin and a thin, locally distributed light gray mud (L2b), also identified within red-brown mud, was localized to the Home Bay region. A classification decision tree (CDT) correctly predicted ∼ 87% of the lithofacies based on five binary choices based on the estimated weight %s of (in order): quartz, kaolinite, plagioclase, iron oxides, and smectites. The detrital tan carbonate (DC) minerals, calcite and dolomite, did not appear in the chosen CDT solution although this lithofacies is easily recognized in cores because of its tan color and the facies is well predicted in the CDT. The addition of grain size did not substantially improve the prediction of the lithofacies although it did change the % importance of the minerals in the CDT.


1993 ◽  
Vol 50 (11) ◽  
pp. 2323-2335 ◽  
Author(s):  
M. P. Heide-Jørgensen ◽  
H. Lassen ◽  
J. Teilmann ◽  
R. A. Davis

Systematic aerial surveys of the wintering grounds of belugas, Delphinapterus leucas, and narwhals, Monodon monoceros, in southern Baffin Bay and northern Davis Strait were conducted in late winter of 1981, 1982, 1990, and 1991. Most belugas were found between 67°N and 69°N and none were seen more than 80 km off the coast of West Greenland. Compared with the surveys in 1981 and 1982, a decline in relative abundance of belugas along West Greenland was evident in 1991. This decline was significant at a probability level of 0.13 of the bootstrapped distribution of the combined abundance estimate. Pod sizes declined significantly between the 1981–82 and 1990–91 surveys. The variations in ice conditions between years did not seem to affect the distribution, clumping, or pod sizes of the belugas. Narwhals were widely distributed in the close pack ice offshore between 65°N and 72°N. Along the West Greenland coast, narwhals were primarily seen at the mouth of Disko Bay. No change in relative abundance or pod sizes could be detected for narwhals.


2011 ◽  
Vol 41 (3) ◽  
pp. 429-436 ◽  
Author(s):  
B. Curry ◽  
C. M. Lee ◽  
B. Petrie

Abstract Davis Strait volume [−2.3 ± 0.7 Sv (1 Sv ≡ 106 m3 s−1); negative sign indicates southward transport], freshwater (−116 ± 41 mSv), and heat (20 ± 9 TW) fluxes estimated from objectively mapped 2004–05 moored array data do not differ significantly from values based on a 1987–90 array but are distributed differently across the strait. The 2004–05 array provided the first year-long measurements in the upper 100 m and over the shelves. The upper 100 m accounts for 39% (−0.9 Sv) of the net volume and 59% (−69 mSv) of the net freshwater fluxes. Shelf contributions are small: 0.4 Sv (volume), 15 mSv (freshwater), and 3 TW (heat) from the West Greenland shelf and −0.1 Sv, −7 mSv, and 1 TW from the Baffin Island shelf. Contemporaneous measurements of the Baffin Bay inflows and outflows indicate that volume and freshwater budgets balance to within 26% and 4%, respectively, of the net Davis Strait outflow. Davis Strait volume and freshwater fluxes nearly equal those from Fram Strait, indicating that both are significant Arctic freshwater pathways.


Sign in / Sign up

Export Citation Format

Share Document