scholarly journals Evolutionary impact assessment of the North Sea plaice fishery

2016 ◽  
Vol 73 (7) ◽  
pp. 1126-1137 ◽  
Author(s):  
Fabian M. Mollet ◽  
Jan Jaap Poos ◽  
Ulf Dieckmann ◽  
Adriaan D. Rijnsdorp

There is growing evidence that fishing causes evolution in life-history traits that affect the productivity of fish stocks. Here we explore the impact of fisheries-induced evolution (FIE) on the productivity of North Sea plaice (Pleuronectes platessa) using an ecogenetic, individual-based model by comparing management scenarios with and without an evolutionary response. Under status-quo management, plaice evolve towards smaller size at age, earlier maturation, and higher reproductive investment. Current reference points of maximum sustainable yield (MSY) and corresponding fishing-mortality rate (FMSY) that ignore FIE will decrease and cannot be considered sustainable. The nature and extent of the change through FIE depend on fishing effort and selectivity. The adverse evolutionary effects can be reduced — and even reversed — by implementing a dome-shaped exploitation pattern protecting the large fish. The evolutionarily sustainable maximum yield can be obtained by combining such a dome-shaped exploitation pattern with a reduction in fishing mortality and an increase in mesh size; it is similar to the MSY that would apply if life-history traits were static. Fisheries managers will need to trade off the short-term loss in yield associated with evolutionarily informed management with the long-term loss in yield FIE causes under evolutionarily uninformed management.

2002 ◽  
Vol 59 (5) ◽  
pp. 899-909 ◽  
Author(s):  
Louise Gendron ◽  
Jean-Claude Brêthes

A spatially explicit model is proposed to assess the impact on fishing mortality of modifying effort patterns for an American lobster (Homarus americanus) fishery. A two-box (offshore and inshore grounds) model is developed for the 1995 lobster fishery season in the Magdalen Islands (Quebec). It considers lobster migration and fisher's temporal and spatial effort dynamics to estimate within-season catchability patterns and exchange rates between the two spatial units. Different management scenarios are simulated: reducing nominal fishing effort and changing its temporal (season's length) and spatial (area closures) allocations. Catchability showed a strong temporal trend, being highest during the first 3 weeks and declining regularly afterwards. The model indicated a continuous migration toward the inshore during the fishing season and that a significant amount of biomass remained offshore. As a result, reducing fishing effort at the beginning of the season would have the greatest impact on exploitation rate. Allowing less effort in the offshore area would also reduce the exploitation rate significantly. Restricting effort to the inshore area, as it was 25 years ago, reduced substantially the exploitation rate. This model represents the first attempt to analyze in-season fishery dynamics and should be useful to further assess the impact of management measures.


2005 ◽  
Vol 62 (7) ◽  
pp. 1483-1491 ◽  
Author(s):  
Laurence T. Kell ◽  
Graham M. Pilling ◽  
Carl M. O'Brien

Abstract Robustness of both short-term stock biomass recovery and longer-term sustainable management strategies to different plausible climatic change scenarios were evaluated for North Sea cod (Gadus morhua), where climate was assumed to impact growth and recruitment. In the short term, climate change had little effect on stock recovery, which depends instead upon reducing fishing effort to allow existing year classes to survive to maturity. In the longer term, climate change has greater effects on stock status, but higher yields and biomass can be expected if fishing mortality is reduced. Incorporating environmental covariates in stock assessment predictions will not achieve sustainable resource use. The implications of climate change for biological reference points depend upon the mechanism through which temperature acts on recruitment, i.e. on juvenile survival or carrying capacity. It is not possible to distinguish between these processes with stock assessment data sets alone. However, this study indicates that reference points based on fishing mortality appear more robust to uncertainty than those based on biomass. Ideally, simpler management procedures are required that meet pre-agreed management objectives and are robust to uncertainty about the true dynamics.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


2013 ◽  
Vol 70 (6) ◽  
pp. 1075-1080 ◽  
Author(s):  
Christopher M. Legault ◽  
Elizabeth N. Brooks

Abstract Legault, C. M., and Brooks, E. N. 2013. Can stock–recruitment points determine which spawning potential ratio is the best proxy for maximum sustainable yield reference points? – ICES Journal of Marine Science, 70: 1075–1080. The approach of examining scatter plots of stock–recruitment (S–R) estimates to determine appropriate spawning potential ratio (SPR)-based proxies for FMSY was investigated through simulation. As originally proposed, the approach assumed that points above a replacement line indicate year classes that produced a surplus of spawners, while points below that line failed to achieve replacement. In practice, this has been implemented by determining Fmed, the fishing mortality rate that produces a replacement line with 50% of the points above and 50% below the line. A new variation on this approach suggests FMSY proxies can be determined by examining the distribution of S–R points that are above or below replacement lines associated with specific SPRs. Through both analytical calculations and stochastic results, we demonstrate that this approach is fundamentally flawed and that in some cases the inference is diametrically opposed to the method's intended purpose. We reject this approach as a tool for determining FMSY proxies. We recommend that the current proxy of F40% be maintained as appropriate for a typical groundfish life history.


2021 ◽  
pp. 1-12
Author(s):  
N.F. Addeo ◽  
C. Li ◽  
T.W. Rusch ◽  
A.J. Dickerson ◽  
A.M. Tarone ◽  
...  

Population growth and rapid urbanisation have increased the global demand for animal feed and protein sources. Therefore, traditional animal feed production should be increased through the use of alternative nutrient sources. Insects as feed are beginning to fill this need. One such insect is the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae). However, to more effectively mass produce the black soldier fly, a better understanding of its thermal biology is needed. Thus, the aim of this study was to evaluate the impact of age, size, and sex on adult black soldier fly thermal preference. The thermal preference of adult black soldier flies was determined by exposing flies to a thermal gradient with a range of surface temperatures and monitoring their positions over time. An aluminium plate was used to create a linear thermal gradient where surface temperatures ranged from ~15-60 °C. Flies were distinguished by age (1-d-post-emergence vs 7-d-post-emergence), size (large vs small) and sex (male vs female) to assess whether thermal preference differed by specific life-history traits. Thermal preference for 7-d-post-emergence adults was significantly lower (19.2 °C) than 1-d-post-emergence adults (28.7 °C), respectively. Similarly, small adults selected significantly cooler (21.1 °C) temperatures than large adults (26.9 °C). No significant differences in thermal preferences were found between sex, regardless of age or size. In fact, males and females had similar thermal preference of 23.8 and 24.2 °C, respectively. This study reveals that multiple life-history traits of adult black soldier fly affect their thermal preference, and thus should be taken into consideration by mass rearing facilities to optimize production.


2019 ◽  
Vol 36 (4) ◽  
pp. 319-324
Author(s):  
İsmet Balık

The aim of this study is to estimate population parameters of pontic shad, Alosa immaculata Bennett, 1835 in the Fatsa coast of the south-eastern Black Sea. A total of 314 pontic shad specimens were collected from study area using artisanal fishing gears from March 2013 to February 2014. In the study, parameters of the von Bertalanffy growth equation were found as L∞=43.05 cm; k=0.430 per year and t0=-0.451 year. The growth performance index (Φ') was estimated as 2.90. The total mortality (Z), natural mortality (M), fishing mortality rates (F) were calculated as 1.33 year-1, 0.75 year-1 and 0.58 year-1, respectively. The annual instantaneous fishing mortality rate was greater than both the target (Fopt=0.375 year-1) and limit (Flimit=0.50 year-1) biological reference points. Similarly, the present level of exploitation rate (E=0.43) was higher than the exploitation ratio for maximum yield per recruit (Emax=0.375) suggesting that overexploitation occurred. These results showed that this species has been over-exploited in the Fatsa coast of the south-eastern Black Sea. Measures should be taken to reduce the current exploitation rate for sustainable fishing of pontic shad in the Fatsa coast of the south-eastern Black Sea.


2006 ◽  
Vol 63 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Joe Horwood ◽  
Carl O'Brien ◽  
Chris Darby

AbstractRecovery of depleted marine, demersal, commercial fish stocks has proved elusive worldwide. As yet, just a few shared or highly migratory stocks have been restored. Here we review the current status of the depleted North Sea cod (Gadus morhua), the scientific advice to managers, and the recovery measures in place. Monitoring the progress of North Sea cod recovery is now hampered by considerable uncertainties in stock assessments associated with low stock size, variable survey indices, and inaccurate catch data. In addition, questions arise as to whether recovery targets are achievable in a changing natural environment. We show that current targets are achievable with fishing mortality rates that are compatible with international agreements even if recruitment levels remain at the current low levels. Furthermore, recent collations of data on international fishing effort have allowed estimation of the cuts in fishing mortality achieved by restrictions on North Sea effort. By the beginning of 2005, these restrictions are estimated to have reduced fishing mortality rates by about 37%. This is insufficient to ensure recovery of North Sea cod within the next decade.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Robert E. Ricklefs

Abstract Although we have learned much about avian life histories during the 50 years since the seminal publications of David Lack, Alexander Skutch, and Reginald Moreau, we still do not have adequate explanations for some of the basic patterns of variation in life-history traits among birds. In part, this reflects two consequences of the predominance of evolutionary ecology thinking during the past three decades. First, by blurring the distinction between life-history traits and life-table variables, we have tended to divorce life histories from their environmental context, which forms the link between the life history and the life table. Second, by emphasizing constrained evolutionary responses to selective factors, we have set aside alternative explanations for observed correlations among life-history traits and life-table variables. Density-dependent feedback and independent evolutionary response to correlated aspects of the environment also may link traits through different mechanisms. Additionally, in some cases we have failed to evaluate quantitatively ideas that are compelling qualitatively, ignored or explained away relevant empirical data, and neglected logical implications of certain compelling ideas. Comparative analysis of avian life histories shows that species are distributed along a dominant slow-fast axis. Furthermore, among birds, annual reproductive rate and adult mortality are directly proportional to each other, requiring that pre-reproductive survival is approximately constant. This further implies that age at maturity increases dramatically with increasing adult survival rate. The significance of these correlations is obscure, particularly because survival and reproductive rates at each age include the effects of many life-history traits. For example, reproductive rate is determined by clutch size, nesting success, season length, and nest-cycle length, each of which represents the outcome of many different interactions of an individual's life-history traits with its environment. Resolution of the most basic issues raised by patterns of life histories clearly will require innovative empirical, modeling, and experimental approaches. However, the most fundamental change required at this time is a broadening of the evolutionary ecology paradigm to include a variety of alternative mechanisms for generating patterns of life-history variation.


2012 ◽  
Vol 58 (12) ◽  
pp. 1597-1608 ◽  
Author(s):  
Harish Padmanabha ◽  
Fabio Correa ◽  
Mathieu Legros ◽  
H. Fredrick Nijhout ◽  
Cynthia Lord ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 462
Author(s):  
Zuzanna M. Filipiak ◽  
Michał Filipiak

Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.


Sign in / Sign up

Export Citation Format

Share Document