Invasive Dreissenid Mussel Effects on Phosphorus Dynamics in Lake Ontario: Insights from Integrated Hydrodynamic-Ecological Modeling

Author(s):  
YUAN HUI ◽  
Joseph F. Atkinson ◽  
Zhenduo Zhu ◽  
Derek Schlea ◽  
Todd Redder

Invasive dreissenid mussels have a profound effect on the total phosphorus (TP) budget in Lake Ontario, which in turn influences ecological processes such as the resurgence of the benthic alga Cladophora. A validated three-dimensional integrated hydrodynamic and ecological modeling framework is applied to quantify the impact that dreissenids have on the spatial and species distribution of TP in the lake. Model results for April to September 2013 show that dreissenids decrease TP in the water column by about 1812 metric tons (MT), which is about 60% of the tributary TP loading to the lake. This reduction in TP affects other processes controlling its distribution. Physical transport of TP from nearshore to offshore waters is reduced, and the amount of TP involved in chemical reactions is reduced, while TP processed by biological transformations is increased. This study provides the first attempt to quantify the TP budget changes in Lake Ontario by dreissenids using numerical modeling, and findings of this study can be generalized to other lakes with similar conditions.

2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


2020 ◽  
Vol 77 (4) ◽  
pp. 1261-1277 ◽  
Author(s):  
Warren P. Smith ◽  
Melville E. Nicholls ◽  
Roger A. Pielke

Abstract Recent numerical modeling studies indicate the importance of radiation in the transformation from a tropical disturbance to a tropical depression, a process known as tropical cyclogenesis. This paper employs a numerical modeling framework to examine the sensitivity to radiation in idealized simulations for different initial vortex strengths, and in doing so highlights when during tropical cyclogenesis radiation is most important. It is shown that all else being equal, a stronger initial vortex reduces the impact that radiation has on accelerating tropical cyclogenesis. We find that radiation’s primary role is to moisten the core of a disturbance through nocturnal differential radiative forcing between the disturbance and its cloud-free surroundings, and after sufficient moistening occurs over a deep layer and the winds are sufficiently strong at the surface, radiation no longer plays as significant a role in tropical cyclogenesis.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 951 ◽  
Author(s):  
Bo Jiang ◽  
Fushan Wang ◽  
Guangheng Ni

Reservoirs change downstream thermal regimes by releasing water of different temperatures to that under natural conditions, which may then alter downstream biodiversity and ecological processes. The hydropower exploitation in the mainstream Lancang-Mekong River has triggered concern for its potential effects on downstream countries, especially the impact of the released cold water on local fishery production. However, it was observed recently that the annual water temperature downstream of the Jinghong Reservoir (near the Chinese border) has increased by 3.0 °C compared to its historical average (1997–2004). In this study, a three-dimensional (3D) model of the Jinghong Reservoir was established to simulate its hydro- and thermodynamics. Results show that: (1) the impoundment of the Jinghong Reservoir contributed about 1.3 °C to the increment of the water temperature; (2) the solar radiation played a much more important role in comparison with atmosphere-water heat exchange in changing water temperatures; and (3) the outflow rate also imposed a significant influence on the water temperature by regulating the residence time. After impoundment, the residence time increased from 3 days to 11 days, which means that the duration that the water body can absorb solar radiation has been prolonged. The results explain the heating mechanism of the Jinghong Reservoir brought to downstream water temperatures.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10103
Author(s):  
Alexis Enrique Medina-Valmaseda ◽  
Rosa E. Rodríguez-Martínez ◽  
Lorenzo Alvarez-Filip ◽  
Eric Jordan-Dahlgren ◽  
Paul Blanchon

Ecological processes on coral reefs commonly have limited spatial and temporal scales and may not be recorded in their long-term geological history. The widespread degradation of Caribbean coral reefs over the last 40 years therefore provides an opportunity to assess the impact of more significant ecological changes on the geological and geomorphic structure of reefs. Here, we document the changing ecology of communities in a coral reef seascape within the context of its geomorphic zonation. By comparing basic ecological indices between historical and modern data we show that in 35 years the reef-front zone was transformed from a complex coral assemblage with a three-dimensional structure, to a size-homogenized and flattened one that is quasi indistinguishable from the adjacent non-accretional coral-ground zone. Today coral assemblages at Punta Maroma are characterized by the dominance of opportunistic species which are either tolerant to adverse environmental conditions, including sedimentation, or are known to be the first scleractinian species to recruit on disturbed reefs, implying they reflect a post-hurricane stage of adjustment. Despite an increase in similarity in ecological indices, the reef-front and coral-ground geomorphic zones still retain significant differences in coral assemblages and benthic habitat and are not homogeneous. The partial convergence of coral assemblages certainly has important consequences for the ecology and geological viability of the reef and its role in coastal protection, but environmental physical drivers continue to exert a fundamental role in the character and zonation of benthic communities of this reef seascape.


2021 ◽  
Vol 13 (2) ◽  
pp. 467
Author(s):  
Amila Jayasinghe ◽  
N. B. S. Madusanka ◽  
Chethika Abenayake ◽  
P. K. S. Mahanama

The study proposes a framework to model the three-dimensional relationship among density, land use, and accessibility in urban areas constructively contributing to overcome the limitations noted in the domains of urban planning and transport planning. First, most of the existing studies have focused on the topological characteristics in capturing the accessibility, but a limited attention has been given on measuring the accessibility by considering both topological and roadway characteristics. Second, the existing research studies have acknowledged the relationship among density, land use, and accessibility while a limited attention has been given to develop a modeling framework to capture the three-dimensional relationship. The modelling framework was tested in three urban areas in Sri Lanka. The research first analyzed the three-dimensional link among density, land use, and accessibility in the case studies. Then, the study developed a set of regression models to capture the density from the land use and accesability. The proposed model recorded a satisfactory level of accuracy (i.e., R2 > 0.70) on a par with internationally accepted standards. The relationship was further elaborated through a decision tree analysis and 4D plot diagrams. Findings of the study can be utilized to model the density of a given land use and the correspondent accessibility scenarios. The proposed model is capable of quantifying the impact of the changes in the density correspondent to the accessibility and land use. Therefore, the study concludes that this will be an effective tool for decision-makers in the fields of land-use planning and transport planning for scenario building, impact analysis, and the formulation of land use zoning and urban development plans aiming at the overarching sustainability of future cities.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


Author(s):  
Gus Mills ◽  
Margaret Mills

This book demonstrates how cheetahs are adapted to arid savannahs like the southern Kalahari, and makes comparisons with other areas, especially the Serengeti. Topics dealt with are: demography and genetic status; feeding ecology, i.e. methods used for studying diet, diets of different demographic groups, individual diet specializations of females, prey selection, the impact of cheetah predation on prey populations, activity regimes and distances travelled per day, hunting behaviour, foraging success and energetics; interspecific competition; spatial ecology; reproductive success and the mating system; and conservation. The major findings show that cheetahs are well adapted to arid ecosystems and are water independent. Cheetah density in the study area was stable at 0.7/100 km2 and the population was genetically diverse. Important prey were steenbok and springbok for females with cubs, gemsbok, and adult ostrich for coalition males, and steenbok, springhares, and hares for single animals. Cheetahs had a density-dependent regulatory effect on steenbok and springbok populations. Females with large cubs had the highest overall food intake. Cheetahs, especially males, were often active at night, and competition with other large carnivores, both by exploitation and interference, was slight. Although predation on small cubs was severe, cub survival to adolescence was six times higher than in the Serengeti. There was no difference in reproductive success between single and coalition males. The conservation priority for cheetahs should be to maintain protected areas over a spectrum of landscapes to allow ecological processes, of which the cheetah is an integral part, to proceed unhindered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.


Sign in / Sign up

Export Citation Format

Share Document