Vegetation responses to simulated emerald ash borer infestation inFraxinus nigradominated wetlands of Upper Michigan, USA

2017 ◽  
Vol 47 (3) ◽  
pp. 319-330 ◽  
Author(s):  
Joshua C. Davis ◽  
Joseph P. Shannon ◽  
Nicholas W. Bolton ◽  
Randall K. Kolka ◽  
Thomas G. Pypker

The invasive emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)) is a significant threat to biodiversity and ecosystem processes in North American forests. Of particular concern is the fate of Fraxinus nigra (black ash), which is frequently a dominant canopy species across much of its range. To investigate the potential vegetation response to the loss of this foundation species, EAB-induced mortality was simulated in F. nigra dominated wetlands of Upper Michigan, USA. No growth response of residual overstory species occurred over the course of three growing seasons, which may in part be attributed to negative effects of post-treatment growing conditions, including prolonged inundation. A significant increase in non-Fraxinus sapling growth rate was observed, however. Mortality of F. nigra did not impact overall stem recruitment or regeneration, although species composition is shifting towards Acer rubrum (red maple) and Betula alleghaniensis (yellow birch) in the seedling layer. The herbaceous community exhibited the greatest response, nearly doubling in areal cover by the end of the study. Importantly, this expanded cover was not associated with decreased establishment of new woody seedlings, suggesting that increased competition between these functional groups has not yet impacted the potential for future recovery of woody vegetation in these forests.

2013 ◽  
Vol 43 (3) ◽  
pp. 224-233 ◽  
Author(s):  
Marcel Prévost ◽  
Daniel Dumais

Estimating residual tree survival and growth is crucial for evaluating the overall merit of partial harvesting. In this case study, we present the effects of different cutting intensities (0%, 40%, 50%, and 60% of merchantable (diameter at breast height ≥ 9.1 cm) basal area (BA)) on the response of residual trees in two mixed yellow birch (Betula alleghaniensis Britt.) – conifer stands in eastern Quebec, Canada. Primarily aimed at promoting regeneration establishment, the experiment was conducted in two sites 90 km apart (Armagh and Duchesnay), each one containing four replicates of treatments in a randomized block design. Mortality after cutting decreased with increasing BA removal, but losses were two to three times higher at Armagh (62–138 stems/ha) than at Duchesnay (22–88 stems/ha). Loss of conifer stems involved primarily balsam fir (Abies balsamea (L.) Mill.) under natural conditions (control), whereas fir and red spruce (Picea rubens Sarg.) were equally affected in partial cuts. Red maple (Acer rubrum L.) and paper birch (Betula papyrifera Marsh.) were lost regardless of treatment. As a whole, growth in merchantable BA increased with cutting intensity. Uniform partial cuts produced good BA growth response from conifers at Armagh (0.27–0.28 m2·ha−1·year−1) and from hardwoods at Duchesnay (0.16–0.25 m2·ha−1·year−1), whereas BA growth was negligible for both species groups in the control. We examine the role of species composition and stand structure before cutting in the response of residual trees.


1983 ◽  
Vol 1 (1) ◽  
pp. 5-6
Author(s):  
R.D. Wright ◽  
E.B. Hale

The influence of N rates and irrigation on shoot growth and trunk diameter were evaluated for red maple (Acer rubrum, L. ‘October Glory’), pin oak (Quercus palustris Muenchh) and dogwood (Cornus florida L. ‘Barton’). Irrigation increased shoot growth and trunk diameter for all 3 species during the first 2 growing seasons. Tree height and trunk diameter at the end of the third growing season were also greater for irrigated trees. Increasing the N levels from 168 to 329 Kg N/ha (150 to 300 lb N/A) resulted in a decrease in trunk diameter the first year and a decrease in shoot growth the second year in ‘October Glory’ maple. No significant differences in oak growth due to N rate were observed. Shoot growth and trunk diameter for dogwood were greater at 329 kg N/ha (300 lb N/A) than at 168 kg N/ha (150 lb N/A) only the first year. Neither height or trunk diameter at end of the third year were significantly increased from applying the higher level of N for any of the genera.


2017 ◽  
Vol 47 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Mark Castle ◽  
Aaron Weiskittel ◽  
Robert Wagner ◽  
Mark Ducey ◽  
Jereme Frank ◽  
...  

Northern hardwood trees display a wide variety of stem forms and defects, which can substantially reduce their financial value and also complicate their silviculture. While attributes of stem form and defect have been incorporated into tree classification systems, their ability to assess product value and recovery in standing trees has not been adequately tested. To address this issue, we classified stem form and risk using a system developed by the Northern Hardwoods Research Institute (NHRI) for four species across several locations in Maine, New Hampshire, and New Brunswick: sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), yellow birch (Betula alleghaniensis Britton), and northern red oak (Quercus rubra L.). Using these data, we (i) quantified interspecific and regional variation in stem form and damage, (ii) related potential sawlog recovery to tree size, form, and risk, and (iii) compared the efficacy of the NHRI system with a commonly used classification system and a continuous measure of stem quality. High variation in both stem form and damage among the species was found, with red maple showing the largest range. A simplified NHRI system including three form classes proved to be sufficient in differentiating sawlog potential in individual trees, while a model using a continuous measure of stem quality (estimated merchantable sawlog height) performed best.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Eric Yetter ◽  
John Brown ◽  
Sophan Chhin

Traditional site index curves are frequently produced for shade-intolerant species but are scarce for shade-tolerant species. Red spruce (Picea rubens Sarg.) can be found in three distinct geographic regions (northern, central, and southern) within the Appalachian Mountains. The one commonly used set of red spruce site index curves is over ninety years old. A definite need exists for a modern, regionally applicable set of site index curves. This research sampled 83 plots randomly located in the central Appalachians of West Virginia. Three sets of anamorphic site index curves were created after careful examination of height models built using Chapman-Richards and Meyer functions. One set of curves was constructed with traditional age height pairs. The second utilized a suppression-corrected age and height pair. The third set examined diameter at breast height (DBH) and height pairs. Fit statistics indicated better performance for the suppression-corrected age–height pair site index and the DBH–height pair site index versus the traditional age–height pair models. Site index conversion equations were also investigated for the red spruce age-corrected site index. Linear regression was used to determine significant geographic and climate variables and the utility of including site index values for red maple (Acer rubrum L.) and yellow birch (Betula alleghaniensis Britton) in the model to predict red spruce site index. Significant models were found for varying combinations of species site index, climate, and geographic variables with R2adj in the range of 0.139–0.455. These new site index curves and conversion equations should provide utility for site productivity estimation and growth and yield modeling while aiding in restoration efforts for this important central Appalachian species.


2003 ◽  
Vol 128 (6) ◽  
pp. 821-826 ◽  
Author(s):  
Jo-Ann Bentz ◽  
Alden M. Townsend

The suitability of container-grown clones of red maple, Acer rubrum L., as a host to the potato leafhopper, Empoasca fabae Harris (Homoptera: Cicadellidae), under different fertilization regimes was determined, and compared to different freeman maple cultivars (A. ×freemanii E. Murray). Three clonal selections of red maple (USNA numbers 56026, 59904, and 55410), and three freeman maple cultivars (55892 `Indian Summer', 67256 `Jeffersred' [trademark Autumn Blaze], and 55890 `Armstrong') were potted in 7.6-L containers, fertilized with either 0, 3.3, or 6.6 g/pot of calcium nitrate and used in experiments. When given a choice, female leafhoppers laid more eggs on leaves of red maple clone 56026 than on leaves of clone 59904, with oviposition linearly increasing on both clones with increases in the fertilization level applied to the trees. Yet, when female leafhoppers were confined to leaves using organza sleeve cages, oviposition increased linearly as fertilizer level increased, without a significant clonal effect. Oviposition did not differ among freeman maple cultivars, nor was it influenced by the fertilizer level applied to the freeman maple trees. Nymphs had the lowest odds of surviving to adulthood when reared on the freeman maple `Jeffersred', but highest when reared on red maple 59904. Red maple 59904 had the fastest growth rate while red maple 55410 had the slowest. Leaf initiation and expansion in red maple 56026 was significantly slower than in the other selections. Leaf development of these three red maple clones was significantly accelerated by the application of fertilizer, regardless of level. The maple selections differed in their mean amounts of foliar macronutrients and micronutrients, which related to the fertilizer level applied to trees. Unfertilized trees had the highest C to N ratio, which decreased as fertilizer level applied to trees was increased. This study showed that fertilization improved the performance of the potato leafhopper on previously nonpreferred maple selections, and that the foliar nutrient content and C to N ratio could be used as indicators of tree susceptibility to insect attack under different growing conditions.


2006 ◽  
Vol 24 (1) ◽  
pp. 18-22
Author(s):  
Donna C. Fare

Abstract Two studies were conducted to determine container size and liner (young bare root trees) trunk diameter effects on growth of Acer rubrum L. ‘Franksred’, Red Sunset™ red maple. In experiment 1, maples liners with initial mean trunk diameters of 12.2 mm (0.5 in), 15.9 mm (0.6 in), and 22.3 mm (0.9 in) were potted in 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) containers and grown for 18 months (2 growing seasons). Height and trunk diameter growth at the end of each growing season were affected by both the initial liner trunk diameter and container size. During year 1, liners with an initial trunk diameter of 12.2 mm (0.5 in) increased 28 and 70% more in height growth compared to liners initially 15.9 mm (0.6 in) and 22.3 mm (0.9) in trunk diameter, respectively. Twenty three percent more height growth occurred with maples in 37.8 liter (#10) and 56.8 liter (#15) containers compared to those in 26.5 liter (#7) containers. Trunk diameter growth increased 50% more with 12.2 mm (0.5 in) liners compared to 22.3 mm (0.9 in) liners. A 25% increase in trunk diameter growth occurred with liners potted in 56.8 liter (#15) compared to 26.5 liter (#7) containers. At the end of the second growing season, final tree size was similar with liners that were initially 12.2 mm (0.5 in) and 15.9 mm (0.6 in) liners in trunk diameter to those initially 22.3 mm (0.9 in) when potted into 37.8 liter (#10) and 56.8 liter (#15) containers. In experiment 2, maple liners with trunk diameters 17.5 mm (0.7 in), 20.5 mm (0.8 in), and 29.0 mm (1.1 in) were potted in container sizes 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) and grown for 18 months (2 growing seasons). Liners grown in 56.8 liter (#15) containers had 92% more height growth and 48% more trunk diameter growth than with liners in 26.5 liter (#7) containers. At termination, the shoot dry weight was 41% larger with maples in 56.8 liter (#15) containers compared to those grown in 26.5 liter (#7) containers.


2017 ◽  
Vol 35 (2) ◽  
pp. 43-57
Author(s):  
Lauren M. Garcia Chance ◽  
Michael A. Arnold ◽  
Leonardo Lombardini ◽  
W. Todd Watson ◽  
Sean T. Carver ◽  
...  

Abstract With container-grown trees offered to the public in an increasing array of sizes, it is important to determine the effects of different sizes of container stock on transplant establishment. Clonal replicates of Vitex agnus-castus, Acer rubrum var. drummondii, and Taxodium distichum grown under common nursery conditions in five container sizes, 3.5, 11.7, 23.3, 97.8, or 175.0 L (#1, #3, #7, #25, or #45, respectively), were transplanted to a sandy clay loam field. Physiological stress was measured using xylem water potential and photosynthetic gas exchange rates. Height, trunk diameter, and canopy spread were monitored post-transplant for three growing seasons and root growth was sampled for the first two growing seasons. Trees of all three species from smaller-sized containers, 23.3 L (#7) or less, exhibited reduced transplant shock, decreased establishment time and increased growth rates in comparison to larger-sized containers, apart from increased mortality in 3.5 L (#1) A. rubrum and slower growth in 3.5 L (#1) T. distichum compared to those transplanted from 11.7 L (#3) or 23.3 L (#7) containers Reduced stress levels and increased growth rates corresponded in timing with greater change in root extension of smaller container-grown trees. At the end of three growing seasons, no statistical differences in height or trunk diameter were present for V. agnus-castus container sizes. With a modest wait, consumers may find that smaller container-grown trees will overcome transplant stress more quickly and exhibit growth rates that surpass those of larger container-grown trees. Index words: Acer rubrum, Taxodium distichum, Vitex agnus-castus, container-grown trees, transplant shock, transplant establishment, photosynthesis, transpiration, water stress. Species used in this study: Chaste tree (Vitex agnus-castus L. [an unnamed white flowering clone]); red maple (Acer rubrum L. var. dummondii [Hook. & Arn. ex Nutt.] Sarg. ‘Maroon'); bald cypress (Taxodium distichum (L.) Rich. [test clone TX8DD38]).


2020 ◽  
Vol 49 (2) ◽  
pp. 391-404 ◽  
Author(s):  
Patrick J Engelken ◽  
Deborah G McCullough

Abstract Extensive ash (Fraxinus spp.) mortality has been reported across much of the area in eastern North America invaded by emerald ash borer (Agrilus planipennis Fairmaire), but indirect effects of emerald ash borer invasion on native forest insects are not well-studied. We assessed cerambycid beetle (Coleoptera: Cerambycidae) species captured in baited cross-vane panel traps during the 2017 and 2018 growing seasons. Traps were placed in 12 riparian forest sites distributed across three watersheds selected to represent the temporal gradient of the emerald ash borer invasion from southeastern to southwestern Michigan. Although ash species originally dominated overstory vegetation in all sites, >85% of ash basal area has been killed by emerald ash borer. We captured a total of 3,645 beetles representing 65 species and five subfamilies. Species assemblages in southeast sites, with the longest history of emerald ash borer invasion, differed from those in south central and southwest Michigan, which were similar. These differences were largely due to three species, which accounted for >60% of beetle captures in southeast Michigan. Associations among site-related variables and beetle captures indicated cerambycid species assemblages were associated most strongly with abundance and decay stage of coarse woody debris. During both years, >90% of cerambycid species were captured by mid-summer but seasonal activity differed among and within tribes. Numbers of beetles captured by canopy and ground traps were similar but species richness was higher in canopy traps than ground traps. Results suggest inputs of emerald ash borer-killed ash can have temporally lagged, secondary effects on cerambycid communities.


2014 ◽  
Vol 44 (7) ◽  
pp. 768-776 ◽  
Author(s):  
Stephen J. Burr ◽  
Deborah G. McCullough

Assessing emerald ash borer (Agrilus planipennis Fairmaire) impacts in North American forests is essential for projecting future species composition of stands invaded by this phloem-feeding pest. We surveyed all species of overstory trees and regeneration in 2010 and 2011 in 24 forested sites with a major component of green ash (Fraxinus pennsylvanica), representing the Core, Crest, and Cusp of the A. planipennis invasion wave across southern Michigan. By 2011, an average of 78.6% ± 0.10%, 44.8% ± 0.11%, and 19.8% ± 0.07% of overstory ash trees representing 87%, 57%, and 14% of the total ash basal area had been killed in Core, Crest, and Cusp sites, respectively. Green ash seedlings, saplings, and recruits were abundant in all sites, but newly germinated ash seedlings were absent in Core sites and scarce in Crest sites. Canopy gaps resulting from current ash decline and mortality increased available photosynthetically active radiation (PAR) and sapling growth in Crest sites, but PAR was low in Core and Cusp sites. Lateral ingrowth of non-ash overstory trees has largely filled canopy gaps in Core sites, and there was little evidence of green ash recruitment into the overstory. Green ash appears unlikely to persist as a dominant species in forests invaded by A. planipennis.


2017 ◽  
Vol 47 (12) ◽  
pp. 1695-1701 ◽  
Author(s):  
John J. Battles ◽  
Natalie L. Cleavitt ◽  
David S. Saah ◽  
Benjamin T. Poling ◽  
Timothy J. Fahey

We quantified damage by a microburst windstorm to a northern hardwood forest (Hubbard Brook Experimental Forest, New Hampshire). These storms may be important in regulating the structure and composition of forests of the northeastern United States, but few studies of damage patterns from microbursts have been reported. In the 600 ha area most heavily impacted by the microburst at Hubbard Brook, 4.6% of the canopy was removed. Although most disturbances were small (<200 m2), much (22%) of the area damaged by the storm was associated with one 5.2 ha blowdown within which 76% of the trees suffered severe damage. Roughly one-half of the damaged trees were uprooted and one-quarter were snapped off, with few differences among tree species. The remaining trees in the blowdown either avoided damage or suffered less severe damage (i.e., leaning but not snapped or uprooted). Regeneration of shade-intolerant (pin cherry (Prunus pensylvanica L. f.)) and mid-tolerant (yellow birch (Betula alleghaniensis Britt.), red maple (Acer rubrum L.)) trees was present in the large canopy gaps. While recruitment opportunities in these large gaps may be important for maintaining populations of pioneer species, the limited spatial extent of microbursts suggests that they play a minor role in the overall dynamics of the northeastern forest.


Sign in / Sign up

Export Citation Format

Share Document