scholarly journals Container Size and Initial Trunk Diameter Effects Growth of Acer rubrum L. During Production

2006 ◽  
Vol 24 (1) ◽  
pp. 18-22
Author(s):  
Donna C. Fare

Abstract Two studies were conducted to determine container size and liner (young bare root trees) trunk diameter effects on growth of Acer rubrum L. ‘Franksred’, Red Sunset™ red maple. In experiment 1, maples liners with initial mean trunk diameters of 12.2 mm (0.5 in), 15.9 mm (0.6 in), and 22.3 mm (0.9 in) were potted in 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) containers and grown for 18 months (2 growing seasons). Height and trunk diameter growth at the end of each growing season were affected by both the initial liner trunk diameter and container size. During year 1, liners with an initial trunk diameter of 12.2 mm (0.5 in) increased 28 and 70% more in height growth compared to liners initially 15.9 mm (0.6 in) and 22.3 mm (0.9) in trunk diameter, respectively. Twenty three percent more height growth occurred with maples in 37.8 liter (#10) and 56.8 liter (#15) containers compared to those in 26.5 liter (#7) containers. Trunk diameter growth increased 50% more with 12.2 mm (0.5 in) liners compared to 22.3 mm (0.9 in) liners. A 25% increase in trunk diameter growth occurred with liners potted in 56.8 liter (#15) compared to 26.5 liter (#7) containers. At the end of the second growing season, final tree size was similar with liners that were initially 12.2 mm (0.5 in) and 15.9 mm (0.6 in) liners in trunk diameter to those initially 22.3 mm (0.9 in) when potted into 37.8 liter (#10) and 56.8 liter (#15) containers. In experiment 2, maple liners with trunk diameters 17.5 mm (0.7 in), 20.5 mm (0.8 in), and 29.0 mm (1.1 in) were potted in container sizes 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) and grown for 18 months (2 growing seasons). Liners grown in 56.8 liter (#15) containers had 92% more height growth and 48% more trunk diameter growth than with liners in 26.5 liter (#7) containers. At termination, the shoot dry weight was 41% larger with maples in 56.8 liter (#15) containers compared to those grown in 26.5 liter (#7) containers.

2014 ◽  
Vol 32 (4) ◽  
pp. 208-214
Author(s):  
Donna Fare

Two experiments were conducted on container-grown plants that were actively growing in spring to evaluate the effects of root pruning prior to repotting or planting in a field plot. In experiment 1, severe root pruning significantly reduced height and trunk diameter growth for both ‘Summer Red’ maple (Acer rubrum L) and overcup oak (Quercus lyrata Walt.) after repotting into a larger container. Shoot and root dry weights were less with plants severely root pruned compared to plants that were not root pruned or had been lightly root pruned. Overcup oaks that received no root pruning or were lightly root pruned did not differ in height or trunk growth 24 weeks after study initiation. However, overcup oaks severely root pruned had brown foliage within 10 days of repotting and within 2 months had extensive dieback, which resulted in negative height growth by the end of the study. In experiment 2, ‘Autumn Flame’ red maple that received no root pruning had similar growth to plants that had light root pruning, but was greater than plants that received moderate or severe root pruning during the first growing season in the field. Autumn Flame red maples severely root pruned prior to field planting had 65% less height growth than plants receiving no root pruning during year 1. After four years, shoot and trunk diameter growth was similar among treatments. The number of circling roots at the soil surface decreased as the amount of root pruning increased.


1983 ◽  
Vol 1 (1) ◽  
pp. 5-6
Author(s):  
R.D. Wright ◽  
E.B. Hale

The influence of N rates and irrigation on shoot growth and trunk diameter were evaluated for red maple (Acer rubrum, L. ‘October Glory’), pin oak (Quercus palustris Muenchh) and dogwood (Cornus florida L. ‘Barton’). Irrigation increased shoot growth and trunk diameter for all 3 species during the first 2 growing seasons. Tree height and trunk diameter at the end of the third growing season were also greater for irrigated trees. Increasing the N levels from 168 to 329 Kg N/ha (150 to 300 lb N/A) resulted in a decrease in trunk diameter the first year and a decrease in shoot growth the second year in ‘October Glory’ maple. No significant differences in oak growth due to N rate were observed. Shoot growth and trunk diameter for dogwood were greater at 329 kg N/ha (300 lb N/A) than at 168 kg N/ha (150 lb N/A) only the first year. Neither height or trunk diameter at end of the third year were significantly increased from applying the higher level of N for any of the genera.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 353-356 ◽  
Author(s):  
Thomas J. Brass ◽  
Gary J. Keever ◽  
D. Joseph Eakes ◽  
Charles H. Gilliam

Growth response of two red maple cultivars (Acer rubrum L. `October Glory' and `Northwood') to styrene lining or copper hydroxide coating of 23.3-liter black plastic containers was evaluated. After the first growing season, plants were left in their original container, repotted into 51.2-liter nontreated containers, or transplanted into the landscape. Copper hydroxide effectively reduced circling of roots of both cultivars at the medium–container interface during the first year of production, but was less effective during the second growing season. Repotting from copper-treated containers into 51.2-liter containers or transplanting into the landscape resulted in more fibrous root development and enhanced root regeneration outside the original rootball relative to transplanting from nontreated containers. However, when copper hydroxide was applied to styrene lining, root regeneration after transplanting was reduced. Roots of plants grown in styrene-lined containers covered the medium–container interface more thoroughly than those in nonlined containers, but height, trunk diameter, and root regeneration were similar. `October Glory' had a larger trunk diameter, more branching, and better root regeneration than `Northwood'.


1997 ◽  
Vol 15 (3) ◽  
pp. 131-134
Author(s):  
Thomas J. Brass ◽  
Gary J. Keever ◽  
Charles H. Gilliam ◽  
D. Joseph Eakes

Abstract Response of dogwood cultivars (Cornus florida ‘Barton's White’ and ‘Weaver's White’) to styrene lining and copper hydroxide coating of 10.3 liter (#3) black plastic containers was evaluated in 1993 and 1994. After the first growing season, dogwoods were either left in their original containers or repotted into untreated 23.3 liter (#7) containers. Copper hydroxide reduced root circling of both cultivars in containers; however, root dry weight of plants grown in copper-treated containers was reduced during the first season. Copper-treated containers resulted in less growth in height when plants were left in their original container during the second growing season and less trunk diameter growth of plants repotted into 23.3 liter (#7) containers. In the absence of copper, more surface root coverage and less surface root dieback occurred with plants grown in styrene-lined containers. Both cultivars grown the second season in their original styrene-lined containers had greater height increase than those in unlined containers. After being repotted into 23.3 liter (#7) containers, both cultivars originally grown in styrene-lined containers had greater trunk diameter growth than those in unlined containers.


2017 ◽  
Vol 35 (2) ◽  
pp. 43-57
Author(s):  
Lauren M. Garcia Chance ◽  
Michael A. Arnold ◽  
Leonardo Lombardini ◽  
W. Todd Watson ◽  
Sean T. Carver ◽  
...  

Abstract With container-grown trees offered to the public in an increasing array of sizes, it is important to determine the effects of different sizes of container stock on transplant establishment. Clonal replicates of Vitex agnus-castus, Acer rubrum var. drummondii, and Taxodium distichum grown under common nursery conditions in five container sizes, 3.5, 11.7, 23.3, 97.8, or 175.0 L (#1, #3, #7, #25, or #45, respectively), were transplanted to a sandy clay loam field. Physiological stress was measured using xylem water potential and photosynthetic gas exchange rates. Height, trunk diameter, and canopy spread were monitored post-transplant for three growing seasons and root growth was sampled for the first two growing seasons. Trees of all three species from smaller-sized containers, 23.3 L (#7) or less, exhibited reduced transplant shock, decreased establishment time and increased growth rates in comparison to larger-sized containers, apart from increased mortality in 3.5 L (#1) A. rubrum and slower growth in 3.5 L (#1) T. distichum compared to those transplanted from 11.7 L (#3) or 23.3 L (#7) containers Reduced stress levels and increased growth rates corresponded in timing with greater change in root extension of smaller container-grown trees. At the end of three growing seasons, no statistical differences in height or trunk diameter were present for V. agnus-castus container sizes. With a modest wait, consumers may find that smaller container-grown trees will overcome transplant stress more quickly and exhibit growth rates that surpass those of larger container-grown trees. Index words: Acer rubrum, Taxodium distichum, Vitex agnus-castus, container-grown trees, transplant shock, transplant establishment, photosynthesis, transpiration, water stress. Species used in this study: Chaste tree (Vitex agnus-castus L. [an unnamed white flowering clone]); red maple (Acer rubrum L. var. dummondii [Hook. & Arn. ex Nutt.] Sarg. ‘Maroon'); bald cypress (Taxodium distichum (L.) Rich. [test clone TX8DD38]).


2019 ◽  
Vol 29 (6) ◽  
pp. 842-853
Author(s):  
Anthony L. Witcher ◽  
Fulya Baysal-Gurel ◽  
Eugene K. Blythe ◽  
Donna C. Fare

Flowering dogwood (Cornus florida) is a valuable nursery product typically produced as a field-grown crop. Container-grown flowering dogwood can grow much faster than field-grown plants, thus shortening the production cycle, yet unacceptable crop loss and reduced quality continue to be major issues with container-grown plants. The objective of this research was to evaluate the effects of container size and shade duration on growth of flowering dogwood cultivars Cherokee Brave™ and Cherokee Princess from bare-root liners. In 2015, bare-root liners were transplanted to 23-L (no. 7) containers and placed under shade for 0 months (full sun), 2 months (sun4/shade2), 4 months (sun2/shade4), or 6 months (full shade) during the growing season. In 2016, one-half of the plants remained in no. 7 containers and the other half were transplanted to 50-L (no. 15) containers and assigned to the same four shade treatments. In 2015, plant height was greatest with full shade for both cultivars, whereas stem diameter and shoot dry weight (SDW) were greatest in full shade for Cherokee Brave™. In 2016, both cultivars in no. 15 containers had greater plant height, stem diameter, root dry weight (RDW), and SDW. Full shade resulted in the greatest height, stem diameter, RDW, and SDW for Cherokee Brave™, and improved overall growth for ‘Cherokee Princess’. However, vigorous growth due to container size and shade exposure increased the severity of powdery mildew (Erysiphe pulchra) in both years. Substrate leachate nutrient concentration (nitrate nitrogen and phosphate) was greater in no. 15 containers but shade duration had no effect.


2012 ◽  
Vol 30 (1) ◽  
pp. 8-12
Author(s):  
Donna C. Fare

Plant response to blue, red, gray or black shade cloth was evaluated with willow oak (Quercus phellos L.), Nuttall oak (Quercus nuttallii Palmer, Nuttall) and Summer Red maple (Acer rubrum L. ‘Summer Red’) liners. Light transmitted through the colored shade cloth had no influence on germination of willow oak acorns or height and caliper growth following germination. Tree height, trunk diameter, number of internodes, shoot and root dry weight were generally greater with the species tested when exposed to red or gray shade cloth, but were often similar to plants exposed to blue or black shade. Height increase of willow oak with red shade was similar to plants exposed to blue or gray; however, the average number of internodes was similar with oaks exposed to blue shade and 16% less with oaks exposed to gray shade. Summer Red maples exposed to black, blue or red shade cloth were similar in height, though plants with blue shade had 23% less dry weight. Nuttall oaks exposed to gray shade had the greatest height increase while the plants exposed to red shade had the largest trunk diameter. The growth parameters measured showed some increases with exposure to colored shade, but the morphology of the species tested was not significantly altered to recommend the use of colored shade during production.


2017 ◽  
Author(s):  
◽  
Kaley Hensel

Elderberry rust (Puccinia sambuci Schewin.) Arthur (=P. bolleyana) and leaf spot diseases are frequently found in commercial American elderberry (Sambucus nigra L. subsp. canadensis L.) plantings throughout the growing season in Missouri. Thus, studies were conducted to ascertain if rust infections affect plant growth, fruiting, or berry puree quality. Rust symptoms were observed in early April at 9 to 18[degrees] C, [greater than or equal to] 3 h leaf wetness, and [greater than or equal to] 85% relative humidity. When young, potted elderberry plants averaged 3 to 6 rust pustules/plant, vegetative growth was not adversely affected. However, field-grown elderberry plants heavily infected with rust (137 pustules/cane) lost nearly twice as many leaves as controls during the growing season, indicating rust-induced defoliation. Shoot dry weight of these heavily infected canes was also 32% less than that of controls. First and last harvest dates were advanced by the high level of rust infection on 'Wyldewood' elderberry canes, but not by low pustules numbers ([less than] 6 pustules/plant) on 'Bob Gordon' or 'Ozark' plants. Similarly, berry yields were not significantly different at low infection levels, even though rust-infected 'Bob Gordon' plants had a 31% reduction in yield with an estimated $440/ha loss of income. Heavily-infected 'Wyldewood' canes had a significant loss in berry yield (47%) and potential income ($2,295/ha), assuming a conservative estimate of five canes/plan. In another study, Colletotrichum was isolated from elderberry leaf spot lesions and identified before subsequent re-inoculation of elderberry plants with this pathogen. Three species of Colletotrichum (C. salicis Funkel, C. kahawae subsp. ciggaro Wollenw., and C. aenigma C.M. Tian and Z. Li) were putatively identified as being casual agents of leaf spot indicating the diversity of species within this genus on elderberry plants.


2017 ◽  
Vol 35 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Darby McGrath ◽  
Jason Henry ◽  
Ryan Munroe ◽  
Erin Agro

Abstract This experiment investigated the effect of different plug-tray cell designs on root development of red maple (Acer rubrum), red oak (Quercus rubra), and quaking aspen (Populus tremuloides) seedlings. In April of 2015, seeds of each species were sown into three plug trays with different substrate volumes and grown for 17 weeks. Two trays had permeable walls for air-pruning, one with vertical ribs and one without. The third tray had impermeable plastic cell walls. Harvested seedlings were analyzed for root dry weight, length, volume, surface area and number of deflected roots. Root length per volume was highest in the impermeable-walled tray for red maple and quaking aspen. The total numbers of deflected root systems were higher for all species in the impermeable-walled tray. Seedlings grown in the air-pruning trays had smaller proportions of deflected root masses. Greater substrate volume did not influence root deflection development. The air-pruning tray without vertical ribs had the lowest total number of root masses with misdirected roots and lower proportions of root masses with misdirected roots for all species. These results indicate that improved root architecture in root-air pruning tray designs is achievable in tree propagation; however, vertical plastic structures in air-pruning trays can still cause root deflections. Index words: Deflected roots, air-pruning, seedling, propagation, plugs, root architecture. Species used in the study: red maple (Acer rubrum L.); red oak (Quercus rubra L.); quaking aspen (Populus tremuloides Michx.).


1996 ◽  
Vol 121 (1) ◽  
pp. 115-122 ◽  
Author(s):  
K.I. Theron ◽  
G. Jacobs

Large Nerine bowdenii bulbs (>14 cm in circumference) were exposed to low ligbt intensities for different periods during two successive growing seasons. The flowering percentage and number of florets in the current season's inflorescence were recorded at anthesis. Small and large bulbs were subjected to continual defoliation starting at different times during the growing season. Bulbs were dissected at planting (26 Sept. 1992) and on 12 Jan. 1993 (nondefoliated control bulbs) to determine growth and developmental stage. At anthesis, inflorescences were harvested and the florets per inflorescence were counted. After anthesis in the fall, all bulbs were dissected and the following variables recorded: 1) percentage flowering, quiescence, or abortion of the current season's inflorescence; 2) developmental stage of quiescent inflorescences; 3) number of florets in the outermost inflorescence; 4) developmental stage of the innermost inflorescence; 5) number of leaves or leaf bases in each growth unit; 6) number of daughter bulbs; and 7) dry weight of new leaf bases. There were three reasons for nonflowering of the bulbs, viz., failure to initiate an inflorescence, inflorescences remaining quiescent, and inflorescence abortion. Individual florets that had not reached stage “Late G” (gynoecium elongated, carpels fused) at the start of rapid inflorescence elongation aborted. The more florets that aborted, the greater the probability that the entire inflorescence aborted. The inflorescence was more vulnerable to stress during the first half of the growing season due to its relatively weak position in the hierarchy of sinks within the bulb.


Sign in / Sign up

Export Citation Format

Share Document