Legacy of forest composition and changes over the long-term on tree radial growth

Author(s):  
Vincent Gauthray-Guyénet ◽  
Robert Schneider ◽  
Alexis Achim ◽  
Mathieu Fortin ◽  
David Paré ◽  
...  

Forests of North America have undergone important changes since European settlement, especially in terms of stand composition and associated changes in soil properties, and the causes and consequences of such variations through time remains poorly understood. This study investigates the effects of long-term changes in forest composition and soil properties on the radial growth of sugar maple and balsam fir, two important species of northeastern North America’s forests. Using data from 130 plots measured in 1930 and in 2012-14 and a mixed-effects modelling approach, we studied the links between radial growth, soil nutrient availability, current stand composition and shifts in vegetation. Balsam fir radial growth was found to vary with soil available nitrogen and present-day relative basal area of yellow birch, while that of sugar maple was found to be invariant to soil characteristics, but proportional to spruce relative basal area. However, no direct effects of vegetation change on radial growth were detected. Our results suggest that prior stand composition had no influence on radial growth of both studied species, yet vegetation change could influence balsam fir growth through an improvement of litter quality from other species. Moreover, we conclude that maintaining a certain proportion of compositional diversity may enhance radial growth of both balsam fir and sugar maple.

2011 ◽  
Vol 41 (6) ◽  
pp. 1295-1307 ◽  
Author(s):  
Robert P. Long ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

Sugar maple (Acer saccharum Marsh.) is a keystone species in the northern hardwood forest, and decline episodes have negatively affected the growth and health of sugar maple in portions of its range over the past 50+ years. Crown health, growth, survival, and flower and seed production of sugar maple were negatively affected by a widespread decline event in the mid-1980s on the unglaciated Allegheny Plateau in northern Pennsylvania. A long-term liming study was initiated in 1985 to evaluate responses to a one-time application of 22.4 Mg·ha–1 of dolomitic limestone in four northern hardwood stands. Over the 23-year period ending in 2008, sugar maple basal area increment (BAINC) increased significantly (P ≤ 0.05) in limed plots from 1995 through 2008, whereas American beech (Fagus grandifolia Ehrh.) BAINC was unaffected. For black cherry (Prunus serotina Ehrh.), the third principal overstory species, BAINC and survival were reduced in limed plots compared with unlimed plots. Foliar Ca and Mg remained significantly higher in sugar maple foliage sampled 21 years after lime application, showing persistence of the lime effect. These results show long-term species-specific responses to lime application.


2003 ◽  
Vol 33 (11) ◽  
pp. 2074-2080 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet ◽  
Claude Morneau

The first tree health decline symptoms usually observed are foliar deficiency symptoms, foliage loss, and dieback. To improve the subjective nature and unspecificity of these assessments, we examined sugar maple (Acer saccharum Marsh.) radial growth and health to develop an indicator of sugar maple tree health status based on radial growth pattern. We used the basal area increment (BAI) of 328 tree-ring collections from 16 sites located in southern Quebec, throughout the sugarbush natural range, that were categorized by defoliation class. BAI of trees with decline symptoms was significantly lower than that of healthy trees in 9 of the 16 stands. BAI trends since 1955 showed an inverse relationship with tree decline class measured in 1989, irrespective of tree age. The results indicate that declining trees in these stands have not recovered based on BAI. They also suggest that the decrease in slope of BAI predated the observed symptoms of sugar maple decline by at least one decade. Results suggest that sugar maple vigor and health can be assessed by measuring tree's BAI trend, an indicator that may be useful for the diagnosis of sugar maple health and status years before the appearance of visible canopy symptoms.


2008 ◽  
Vol 38 (12) ◽  
pp. 3002-3010 ◽  
Author(s):  
María L. Suarez ◽  
Thomas Kitzberger

Severe droughts have the potential of inducing transient shifts in forest canopy composition by altering species-specific adult tree mortality patterns. However, permanent vegetation change will occur only if tree recruitment patterns are also affected. Here, we analyze how a massive mortality event triggered by the 1998–1999 drought affected adult and sapling mortality and recruitment in a mixed Nothofagus dombeyi (Mirb.) Blume – Austrocedrus chilensis (D. Don) Flor. et Boult. forests of northern Patagonia. Comparing drought-induced and tree-fall gaps, we assessed changes in forest composition, microenvironments, and seedling density and survival of both species. Drought-kill disturbance shifted species composition of both canopy and sapling cohorts in favour of A. chilensis. Drought gaps were characterized by a shadier and more xeric environment, affecting the recruitment pattern of N. dombeyi seedlings. The seedling cohort was composed mostly of A. chilensis, and its survival was always higher than that of N. dombeyi. Additionally, A. chilensis seedlings showed higher plasticity than N. dombeyi seedlings, increasing its root to shoot ratios in drought gaps. The results suggest that extreme drought itself is a strong driving force in forest dynamics, with important imprints on forest landscapes. Future climate-change scenarios, projecting an increased in frequency and severity of droughts, alert us about expected long-term compositional shifts in many forest ecosystems.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 271 ◽  
Author(s):  
Susan Jones-Held ◽  
Michael Held ◽  
Joe Winstead ◽  
William Bryant

Wind disturbance is an important factor that can affect the development of the forests of the Central Hardwood Region of the United States. However, there have been few long-term studies of the recovery of these systems following wind damage. Long-term studies of protected forest systems, such as Dinsmore Woods in Northern Kentucky, within the fragmented forest of this region are valuable as they provide a resource to document and understand the effect of both abiotic and biotic challenges to forest systems. This study is a 40-year analysis of both overstory and understory changes in the forest system at Dinsmore Woods as the result of damage caused by severe winds in the spring of 1974. The forest was surveyed before and immediately following the windstorm and then at 10-year intervals. Although the windstorm had an immediate effect on the forest, the pattern of damage was complex. The forest canopy (diameter at breast height (DBH) ≥ 30 cm) experienced an irregular pattern of damage while in the subcanopy (DBH ≤ 30 cm) there was a 25% reduction in total basal area. However, the major effects of the windstorm were delayed and subsequently have altered forest recovery. Ten years following the disturbance declines were seen in total density and basal area in the canopy and subcanopy of the forest as a consequence of windstorm damage. In the past 20 years the total basal area of the canopy has increased and exceeds the pre-disturbance total basal area. In contrast, the subcanopy total basal area continued to decline 20 years post-disturbance and has not recovered. Further openings in the canopy and subcanopy due to the delayed windstorm effects helped to establish a dense understory of native shrubs and sugar maple which have affected tree regeneration and is reflected in the continual decline in species diversity in the subcanopy and sapling strata over the 40-year period.


1995 ◽  
Vol 25 (11) ◽  
pp. 1815-1820 ◽  
Author(s):  
David Pothier

A study was initiated in 1975 on a sugar maple (Acersaccharum Marsh.) stand of the Station forestière de Duchesnay (46°57′N, 71°39′W) to determine the effect of thinning on sap production of sugar maple. From 1975 to 1989, spring sap flow and sugar concentration were measured in 58 sample plots distributed in five blocks within which three intensities of thinning (0, 22, and 35% of the initial basal area) were applied. Thinning intensities only accounted for a small part of the variation in sap volume per tap and sap sugar concentration. However, more than 60% of the variation of these two sap characteristics was related to year-to-year variations. This suggests that sap yield and sap sugar concentration were largely controlled by the different climatic conditions that occurred during these years. Hence, sap yield was strongly correlated with the number of days characterized by temperature fluctuations around 0 °C during springtime and by winter precipitation. Sap sugar concentration was also correlated to the number of days with temperature fluctuating around 0 °C during springtime but all other tested meteorological variables failed to improve this relationship. While thinning intensities did not affect sap yield per tap and sugar concentration, sugar yield per hectare could be improved by thinning over the long term since it increased the potential number of taps per hectare.


1995 ◽  
Vol 25 (8) ◽  
pp. 1375-1384 ◽  
Author(s):  
Yves Bergeron ◽  
Alain Leduc ◽  
Claude Joyal ◽  
Hubert Morin

Balsam fir (Abiesbalsamea (L.) Mill.) mortality caused by the last spruce budworm (Choristoneurafumiferana (Clem.)) outbreak (1970–1987) was studied in 624 sites belonging to a complex natural forest mosaic originating from different fires in northwestern Quebec. Multiple regression analyses were used to assess the respective effects of stand structure, species composition, site characteristics, and the forest composition surrounding the stand on observed stand mortality. Mortality was observed to increase in relation to diameter of the trees, basal area of balsam fir, and the number of stands dominated by conifers in the forest mosaic. All of these factors showed significant independent effects, but 60% of the variance remained unexplained. Site characteristics, however, did not show a significant relationship to stand mortality. The results suggest that forest composition at both the stand and the forest mosaic levels may be responsible for differing degrees of defoliation that result in differences in stand mortality. Forest management strategies that favor the presence of mixed compositions both at the stand level and at the mosaic level may contribute to decreased stand vulnerability.


1999 ◽  
Vol 29 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Todd E Ristau ◽  
Stephen B Horsley

Pin cherry (Prunus pensylvanica L.) develops an early height advantage over associated species. Data from three long-term studies, extending up to 70 years after complete overstory removal, were used to evaluate the effects of pin cherry density on associates. Survival of seedling-origin stems of black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), and sugar maple (Acer saccharum Marsh.) at age 15 decreased as the density of pin cherry >1.5 m tall at age 3 increased. The regression of pin cherry with black cherry was particularly strong (R2 = 0.632). Height of the tallest black cherry and white ash (Fraxinus americana L.) at age 15 also decreased. If the density of pin cherry at age 3 was > 1 stem > 1.5 m tall per 0.0004 ha (high density), the number of black cherry fell below full stocking at age 15. When pin cherry occurred in high density, it lived longer than when it occurred at low density (< 1 stem > 1.5 m tall per 0.0004 ha). High pin cherry density early in stand development delayed the time when shade-intolerant and shade-intermediate species reached a stable proportion of the total basal area. In the long term, pin cherry reduced stand diameter and volume growth, particularly of black cherry.


1995 ◽  
Vol 25 (3) ◽  
pp. 386-397 ◽  
Author(s):  
Timothy R. Wilmot ◽  
David S. Ellsworth ◽  
Melvin T. Tyree

We compared growth with soil and foliar elemental composition in seven stands of sugar maple (Acersaccharum Marsh.) in northern Vermont characterized by high or low incidence of crown dieback over the period 1989–1992. In stands with low-quality crown conditions, such as elevated crown dieback, long-term basal area growth rates were approximately half of those in stands with higher crown quality. Average annual basal area growth was 17.5 cm2 for dominant trees in these stands during the period 1953–1992 compared with 32.3 cm2 for trees in higher quality stands. The occurrence of elevated crown dieback was apparently unrelated to stand characteristics such as stand age, basal area, stem density, elevation, or aspect among the stands sampled. Stands with elevated crown dieback were found on soils characterized by low pH ( <4.0), low base cation pools (particularly Ca and Mg), and higher Al in soil surface horizons than higher quality stands. Over 4 years, sugar maple stands with elevated crown dieback exhibited significantly lower (P < 0.01) foliar Ca concentrations and somewhat lower foliar N and Mg than higher quality stands, while soil and foliar K were similar in both dieback classes. Among survey plots sampled in 1989, soil pH and Ca were strongly correlated with foliar Ca and K (P < 0.001). Soil pH, soil Ca, and foliar Ca were also strongly correlated with the level of crown dieback among plots and stands (P < 0.0001). Our results indicate that podzolic soils in northern Vermont may present marginal conditions for sugar maple growth in terms of soil pH and soil Ca availability, but that P and K pools appear to be sufficient for growth. While a lack of historical data prevents identification of long-term trends in nutrient availability in these soils, factors promoting losses of base cations from acidic, base-cation-poor Podzols may also exacerbate foliar nutrient deficiencies and thus affect the crown condition of sugarbushes in northern Vermont.


2022 ◽  
Vol 4 ◽  
Author(s):  
Taylor N. Turner ◽  
Thomas J. Dean ◽  
Jeff S. Kuehny

Native hardwood regeneration in the southeast United States is hindered by repeat disturbance events and the presence of invasive species. Our study aimed to determine the ability of native species in an unmanaged urban forest fragment to persist following high winds from hurricane Gustav in 2008 and subsequent salvage logging. In 2009, researchers estimated the density and composition of the regeneration and overstory trees as well as percent crown cover of invasive Chinese privet. Percent Chinese privet cover was visibly high, leading them to believe it may be inhibiting native hardwood establishment. Ten years later in 2019, we returned to the plots to take repeat measurements. Forest composition remains the same and privet crown cover remains high. There has been no increase in regenerating individuals, and overstory trees per hectare and basal area remains low. These results confirm that the heavy Chinese privet presence is persistent long term and will require management to promote reproduction of native overstory tree species.


1985 ◽  
Vol 15 (1) ◽  
pp. 141-147 ◽  
Author(s):  
Ann M. Lynch ◽  
John A. Witter

The association of various stand, site, and soil variables with impact of the spruce budworm, Choristoneurafumiferana (Clemens), on balsam fir, Abiesbalsamea (L.) Mill., was examined in the Hiawatha and Ottawa National Forests of Michigan's Upper Peninsula. Geographic differences in impact were due, at least in part, to differences in the duration of the budworm outbreak. Impact was extremely variable between stands. Linear relations observed between impact variables and stand, site, and soil variables were weak. The quantity of balsam fir in the stand (basal area per hectare or proportion of stocking) was positively correlated with dead basal area per hectare but not with percent basal area mortality. Increased impact was associated with increased quantities of white pine (Pinusstrobus L.), northern white-cedar (Thujaoccidentalis L.), eastern hemlock (Tsugacanadensis (L.) Carr.), sugar maple (Acersaccharum L.), and red maple (Acerrubrum L.) in one or both of the National Forests. Drainage and soil moisture appeared to play a role in determining the amount of spruce budworm impact in individual stands. Principal components extracted from the stand data accounted for variability between different stand types. However, the between-stand variability in impact did not coincide with the between-stand-type variability described by the components.


Sign in / Sign up

Export Citation Format

Share Document