Effets des coupes d'éclaircie et des variations climatiques interannuelles sur la production et la teneur en sucre de la sève d'une érablière

1995 ◽  
Vol 25 (11) ◽  
pp. 1815-1820 ◽  
Author(s):  
David Pothier

A study was initiated in 1975 on a sugar maple (Acersaccharum Marsh.) stand of the Station forestière de Duchesnay (46°57′N, 71°39′W) to determine the effect of thinning on sap production of sugar maple. From 1975 to 1989, spring sap flow and sugar concentration were measured in 58 sample plots distributed in five blocks within which three intensities of thinning (0, 22, and 35% of the initial basal area) were applied. Thinning intensities only accounted for a small part of the variation in sap volume per tap and sap sugar concentration. However, more than 60% of the variation of these two sap characteristics was related to year-to-year variations. This suggests that sap yield and sap sugar concentration were largely controlled by the different climatic conditions that occurred during these years. Hence, sap yield was strongly correlated with the number of days characterized by temperature fluctuations around 0 °C during springtime and by winter precipitation. Sap sugar concentration was also correlated to the number of days with temperature fluctuating around 0 °C during springtime but all other tested meteorological variables failed to improve this relationship. While thinning intensities did not affect sap yield per tap and sugar concentration, sugar yield per hectare could be improved by thinning over the long term since it increased the potential number of taps per hectare.


1995 ◽  
Vol 25 (3) ◽  
pp. 386-397 ◽  
Author(s):  
Timothy R. Wilmot ◽  
David S. Ellsworth ◽  
Melvin T. Tyree

We compared growth with soil and foliar elemental composition in seven stands of sugar maple (Acersaccharum Marsh.) in northern Vermont characterized by high or low incidence of crown dieback over the period 1989–1992. In stands with low-quality crown conditions, such as elevated crown dieback, long-term basal area growth rates were approximately half of those in stands with higher crown quality. Average annual basal area growth was 17.5 cm2 for dominant trees in these stands during the period 1953–1992 compared with 32.3 cm2 for trees in higher quality stands. The occurrence of elevated crown dieback was apparently unrelated to stand characteristics such as stand age, basal area, stem density, elevation, or aspect among the stands sampled. Stands with elevated crown dieback were found on soils characterized by low pH ( <4.0), low base cation pools (particularly Ca and Mg), and higher Al in soil surface horizons than higher quality stands. Over 4 years, sugar maple stands with elevated crown dieback exhibited significantly lower (P < 0.01) foliar Ca concentrations and somewhat lower foliar N and Mg than higher quality stands, while soil and foliar K were similar in both dieback classes. Among survey plots sampled in 1989, soil pH and Ca were strongly correlated with foliar Ca and K (P < 0.001). Soil pH, soil Ca, and foliar Ca were also strongly correlated with the level of crown dieback among plots and stands (P < 0.0001). Our results indicate that podzolic soils in northern Vermont may present marginal conditions for sugar maple growth in terms of soil pH and soil Ca availability, but that P and K pools appear to be sufficient for growth. While a lack of historical data prevents identification of long-term trends in nutrient availability in these soils, factors promoting losses of base cations from acidic, base-cation-poor Podzols may also exacerbate foliar nutrient deficiencies and thus affect the crown condition of sugarbushes in northern Vermont.



1980 ◽  
Vol 10 (2) ◽  
pp. 152-157 ◽  
Author(s):  
André P. Plamondon ◽  
Pierre Y. Bernier

It has already been shown that a relation exists between the daily rate of spring sap flow and the twig temperature of sugar maple. The authors first develop a method to calculate this temperature from radiation, wind speed, and air temperature. For each sap flow cycle, the values of four factors controlling the phenomenon are determined: the number of hours and degree-hours below 0 °C and above 0 °C. Each factor is then converted into an efficiency function. The combination of the four functions gives the global efficiency of the climatic conditions for each sap flow cycle. The flows calculated from the global efficiency are strongly correlated (r = 0.94) with the measured ones.



2011 ◽  
Vol 41 (6) ◽  
pp. 1295-1307 ◽  
Author(s):  
Robert P. Long ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

Sugar maple (Acer saccharum Marsh.) is a keystone species in the northern hardwood forest, and decline episodes have negatively affected the growth and health of sugar maple in portions of its range over the past 50+ years. Crown health, growth, survival, and flower and seed production of sugar maple were negatively affected by a widespread decline event in the mid-1980s on the unglaciated Allegheny Plateau in northern Pennsylvania. A long-term liming study was initiated in 1985 to evaluate responses to a one-time application of 22.4 Mg·ha–1 of dolomitic limestone in four northern hardwood stands. Over the 23-year period ending in 2008, sugar maple basal area increment (BAINC) increased significantly (P ≤ 0.05) in limed plots from 1995 through 2008, whereas American beech (Fagus grandifolia Ehrh.) BAINC was unaffected. For black cherry (Prunus serotina Ehrh.), the third principal overstory species, BAINC and survival were reduced in limed plots compared with unlimed plots. Foliar Ca and Mg remained significantly higher in sugar maple foliage sampled 21 years after lime application, showing persistence of the lime effect. These results show long-term species-specific responses to lime application.



Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 271 ◽  
Author(s):  
Susan Jones-Held ◽  
Michael Held ◽  
Joe Winstead ◽  
William Bryant

Wind disturbance is an important factor that can affect the development of the forests of the Central Hardwood Region of the United States. However, there have been few long-term studies of the recovery of these systems following wind damage. Long-term studies of protected forest systems, such as Dinsmore Woods in Northern Kentucky, within the fragmented forest of this region are valuable as they provide a resource to document and understand the effect of both abiotic and biotic challenges to forest systems. This study is a 40-year analysis of both overstory and understory changes in the forest system at Dinsmore Woods as the result of damage caused by severe winds in the spring of 1974. The forest was surveyed before and immediately following the windstorm and then at 10-year intervals. Although the windstorm had an immediate effect on the forest, the pattern of damage was complex. The forest canopy (diameter at breast height (DBH) ≥ 30 cm) experienced an irregular pattern of damage while in the subcanopy (DBH ≤ 30 cm) there was a 25% reduction in total basal area. However, the major effects of the windstorm were delayed and subsequently have altered forest recovery. Ten years following the disturbance declines were seen in total density and basal area in the canopy and subcanopy of the forest as a consequence of windstorm damage. In the past 20 years the total basal area of the canopy has increased and exceeds the pre-disturbance total basal area. In contrast, the subcanopy total basal area continued to decline 20 years post-disturbance and has not recovered. Further openings in the canopy and subcanopy due to the delayed windstorm effects helped to establish a dense understory of native shrubs and sugar maple which have affected tree regeneration and is reflected in the continual decline in species diversity in the subcanopy and sapling strata over the 40-year period.



2014 ◽  
Vol 6 (2) ◽  
pp. 313-324 ◽  
Author(s):  
Edward M. Mugalavai ◽  
Emmanuel C. Kipkorir

Uncertainties caused by climate change and population explosion require suitable methods for estimating grain yield during the growing seasons. This paper evaluates the applicability of the AquaCrop model in the region of western Kenya. The objectives of the study were to: simulate the long-term maize crop yields for the region using AquaCrop model for variable climate scenarios, and estimate the expected yield for the ongoing season. Climate was classified into below normal (&lt;x̅ − 1∂), normal (between x̅ − 1∂ and x̅ + 1∂) and above normal (&gt;x̅ + 1∂) conditions based on the Kenya Meteorological Department (KMD) convention. Simulation of grain yield was based on model calibration results, periodic KMD forecasts and the long-term mean for the seasons. The calibrated model is able to estimate both long-term seasonal grain yield and expected harvest for the ongoing season based on climatic conditions that are compared with the long-term seasonal characteristics and complemented by meteorological forecasts. The ongoing season yield simulation was based on persistence theory of Markov processes whose results strongly correlated (r = 0.9) with actual seasonal observed yield.



1999 ◽  
Vol 29 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Todd E Ristau ◽  
Stephen B Horsley

Pin cherry (Prunus pensylvanica L.) develops an early height advantage over associated species. Data from three long-term studies, extending up to 70 years after complete overstory removal, were used to evaluate the effects of pin cherry density on associates. Survival of seedling-origin stems of black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), and sugar maple (Acer saccharum Marsh.) at age 15 decreased as the density of pin cherry >1.5 m tall at age 3 increased. The regression of pin cherry with black cherry was particularly strong (R2 = 0.632). Height of the tallest black cherry and white ash (Fraxinus americana L.) at age 15 also decreased. If the density of pin cherry at age 3 was > 1 stem > 1.5 m tall per 0.0004 ha (high density), the number of black cherry fell below full stocking at age 15. When pin cherry occurred in high density, it lived longer than when it occurred at low density (< 1 stem > 1.5 m tall per 0.0004 ha). High pin cherry density early in stand development delayed the time when shade-intolerant and shade-intermediate species reached a stable proportion of the total basal area. In the long term, pin cherry reduced stand diameter and volume growth, particularly of black cherry.



1985 ◽  
Vol 61 (4) ◽  
pp. 303-307 ◽  
Author(s):  
Y. T. Kim ◽  
R. H. Leech

Temperature, sunlight and precipitation were studied to examine their influence on sugar maple (Acer saccharum Marsh) sap flow over a five-year period. Temperature was the most important climatic factor influencing the amount of sap flow. Sunlight also increased the sap flow, but rain one day before the sap collection reduced it.



1997 ◽  
Vol 14 (3) ◽  
pp. 147-151 ◽  
Author(s):  
William B. Leak ◽  
Dale S. Solomon

Abstract Diameter growth of crop trees of paper birch, sugar maple, yellow birch, white ash, beech, and red maple was remeasured for 31 yr following a heavy release, light release, species removal, and control applied to an evenaged 25 yr old northern hardwood stand in New Hampshire. Under all regimes, final dbh of sampled crop trees was positively related to initial dbh. White ash showed no significant or consistent increase in final dbh in response to treatment, expressed in terms of residual basal area per acre. Paper birch, beech, and red maple had final average diameters up to about 2 in. larger due to heavy release as compared with the control. Sugar maple showed a gain of up to 1 in. in final dbh over the 3l yr period, while yellow birch showed a similar, though nonsignificant, gain. The study shows the long-term effects of release treatments, and the importance of releasing larger trees and responsive species. North J. Appl. For. 14(3):147-151.



Author(s):  
Vincent Gauthray-Guyénet ◽  
Robert Schneider ◽  
Alexis Achim ◽  
Mathieu Fortin ◽  
David Paré ◽  
...  

Forests of North America have undergone important changes since European settlement, especially in terms of stand composition and associated changes in soil properties, and the causes and consequences of such variations through time remains poorly understood. This study investigates the effects of long-term changes in forest composition and soil properties on the radial growth of sugar maple and balsam fir, two important species of northeastern North America’s forests. Using data from 130 plots measured in 1930 and in 2012-14 and a mixed-effects modelling approach, we studied the links between radial growth, soil nutrient availability, current stand composition and shifts in vegetation. Balsam fir radial growth was found to vary with soil available nitrogen and present-day relative basal area of yellow birch, while that of sugar maple was found to be invariant to soil characteristics, but proportional to spruce relative basal area. However, no direct effects of vegetation change on radial growth were detected. Our results suggest that prior stand composition had no influence on radial growth of both studied species, yet vegetation change could influence balsam fir growth through an improvement of litter quality from other species. Moreover, we conclude that maintaining a certain proportion of compositional diversity may enhance radial growth of both balsam fir and sugar maple.



Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1746
Author(s):  
Elisabet Martínez-Sancho ◽  
Emilia Gutiérrez ◽  
Cristina Valeriano ◽  
Montse Ribas ◽  
Margarita I. Popkova ◽  
...  

Temperature and precipitation variability throughout the year control the intra-annual dynamics of tree-ring formation. Physiological adaptation of trees to climate change is among the key issues to better understand and predict future forest performance and composition. In this study, we investigated the species’ coexistence and performance of Scots pine and pubescent oak growing in a mixed sub-Mediterranean forest in the northeast of the Iberian Peninsula. We assessed intra-annual cumulative growth patterns derived from band dendrometers during four consecutive growing seasons and long-term changes in basal area increment for the period 1950–2014. Our results revealed that Scots pine followed an intra-annual bimodal growth pattern. Scots pine growth was mainly limited by water availability at intra-annual, interannual and decadal time scales, which resulted in a negative long-term growth trend. Conversely, oak displayed a unimodal growth pattern, which was less climatically constrained. A significant increase in basal area of oak denotes an overall better potential acclimation to prevailing climatic conditions at the expenses of a higher risk of physiological failure during extreme climate events.



Sign in / Sign up

Export Citation Format

Share Document