scholarly journals Microorganisms that participate in biochemical cycles in wetlands

Author(s):  
Macarena Mellado ◽  
Jeannette Vera

Several biochemical cycles are performed in natural wetlands (NWs) and constructed wetlands (CWs). The knowledge of the microorganisms could be used to monitor the restoration of wetlands or the performance of the wastewater treatment. Regarding bacteria, Proteobacteria phylum is the most abundant in NWs and CWs, which possesses a role in N, P, and S cycles, and in the degradation of organic matter. Other phyla are present in lower abundance. Archaea participate in methanogenesis, methane oxidation, and the methanogenic N2 fixation. Sulfur and phosphorus cycles are also performed by other microorganisms, such as Chloroflexi or Nitrospirae phyla. In general, there is more information about the N cycle, especially nitrification and denitrification. Processes where archaea participate (e.g. methane oxidation, methanogenic N2 fixation) are still unclear their metabolic role and several of these microorganisms have not been isolated so far. The study can use 16S rDNA genes or functional genes. The use of functional genes gives information to monitor specific microbial populations and 16S rDNA is more suitable to perform the taxonomic classification. Also, there are several Candidatus microorganisms, which have not been isolated so far. However, it has been described their metabolic role in the biochemical cycles in wetlands.

2020 ◽  
Vol 10 (16) ◽  
pp. 5571
Author(s):  
Qingqing Cao ◽  
Haijie Zhang ◽  
Wen Ma ◽  
Renqing Wang ◽  
Jian Liu

The influence of Alternanthera philoxeroide (alligator weed) invasion on wetland organic matter (OM) accumulation and bacterial changes is rarely studied, but is possibly an important step for revealing the invasion mechanism. Thus, the distribution characteristics of light fraction organic carbon and nitrogen (LFOC and LFON), and heavy fractions organic carbon and nitrogen (HFOC and HFON) were analyzed. Sampling was done on two sediment depths (0–15 cm and 15–25 cm) of invaded and normal habitats of two natural wetlands and two constructed wetlands, and bacterial taxa and composition in surface sediments were also analyzed by high-throughput sequencing. In the surface sediments, the LFOC and LFON contents were significantly higher in the constructed wetlands (0.791 and 0.043 g·kg−1) than in the natural wetlands (0.500 and 0.022 g·kg−1), and the contents of the C and N fractions were also prominently higher in the invaded areas than in normal wetland habitats. The OM storage was relatively stable. Proteobacteria (55.94%), Bacteroidetes (5.74%), Acidobacteria (6.66%), and Chloroflexi (4.67%) were the dominant bacterial phyla in the wetlands. The abundance of Acidobacteria, Actinobacteria, and Gemmatimonadetes were significantly higher in the invaded areas than in the normal habitats. The relative high abundance-based coverage estimator (ACE) index in the constructed wetlands and invaded areas suggested the corresponding high bacterial diversity. The significant and positive relationship between Acidobacteria and organic nitrogen concentrations suggested their potential and positive interrelationships. This study demonstrated that the alligator weed invasion could significantly change the compositions of sediment organic matterand bacteria, thus further changing the nutrition cycle and wetland microhabitat.


1994 ◽  
Vol 29 (4) ◽  
pp. 219-226 ◽  
Author(s):  
William J. Tarutis ◽  
Richard F. Unz

Although numerous mathematical models have been used to describe decomposition, few, if any, have been used to model the removal of pollutants in constructed wetlands. A steady-state model based on decomposition kinetics and reaction stoichiometry has been developed which simulates the removal of ferrous iron entering wetlands constructed for mine drainage treatment. Input variables for the model include organic matter concentration, reaction rate coefficient, porosity and dry density, and hydraulic detention time. Application of the model assumes complete anaerobic conditions within the entire substrate profile, constant temperature, no additional organic matter input, and subsurface flow only. For these ideal conditions, model simulations indicate that wetlands constructed with readily decomposable substrates rich in organic carbon are initially capable of removing far greater amounts of iron than wetlands built with less biodegradable substrates. However, after three to five years of operation this difference becomes negligible. For acceptable long-term treatment performance, therefore, periodic additions of decomposable organic matter will be required.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 564
Author(s):  
Heying Li ◽  
Jiayao Wang ◽  
Jianchen Zhang ◽  
Fen Qin ◽  
Jiyuan Hu ◽  
...  

The study of the temporal and spatial evolution of wetland landscapes and its driving factors is an important reference for wetland ecological restoration and protection. This article utilized seven periods of land use data in Henan Province from 1980 to 2015 to extract the spatial distribution characteristics of wetlands and analyze the temporal and spatial changes of wetlands in Henan Province. Transfer matrix, landscape metrics, correlation analysis, and redundancy analysis were applied to calculate and analyze the transformation types and area of wetland resources between all consecutive periods, and then the main driving factors of wetland expansion/contraction were explored. First, the total wetland area in Henan Province increased by 28% from 1980 to 2015, and the increased wetland area was mainly constructed wetlands, including paddy field, reservoir and pond, and canal. Natural wetlands such as marsh, lake, and floodplain decreased by 74%. Marsh area declined the most during 1990–1995, and was mainly transformed into floodplain and “Others” because of agricultural reclamation, low precipitation, and low Yellow River runoff. The floodplain area dropped the most from 2005 to 2010, mainly converted to canals and “Others” because of reclamation, exploitation of groundwater, the construction of the South–to–North Water Transfer Project, and recreational land development. Second, the results of correlation analysis and redundancy analysis indicated that economic factors were positively correlated with the area of some constructed wetlands and negatively correlated with the area of some natural wetlands. Socioeconomic development was the main driving factors for changes in wetland types. The proportion of wetland habitat in Henan Province in 2015 was only 0.3%, which is low compared to the Chinese average of 2.7%. The government should pay more attention to the restoration of natural wetlands in Henan Province.


2009 ◽  
Vol 59 (6) ◽  
pp. 1111-1116 ◽  
Author(s):  
Guenter Langergraber ◽  
Alexander Pressl ◽  
Klaus Leroch ◽  
Roland Rohrhofer ◽  
Raimund Haberl

In a first phase of this study it was shown that the Austrian effluent standards for organic matter could not be met in winter for vertical flow (VF) beds designed for and loaded with 27 g COD.m−2.d−1 (3 m2 per person equivalent). The aim of this second phase of the study was to investigate, if the performance of a constructed wetland can be enhanced, i.e. if the effluent requirements can be met, when an additional gravel layer (15 cm, 4–8 mm) is added on top of the main layer of the VF bed. The hypothesis was that this top layer would increase the thermal insulation and consequently the temperatures in the filter bed during cold periods, thus resulting in higher removal efficiencies during winter. Two VF beds were operated in parallel; one bed with such a 15 cm top layer, one without. Otherwise the construction of both beds was identical: surface area of about 20 m2, 50 cm main layer (grain size 0.06–4 mm, d10=0.2 mm; d60=0.8 mm), planted with common reed (Phragmites australis). The beds were intermittently loaded 4 times per day with mechanically pre-treated wastewater (hydraulic loading: 47 mm.d−1; median value of the influent concentration: 505 mg COD.L−1). Despite a better performance during the first winter, the bed with additional top layer showed in general a very unstable performance. It is assumed that the main reason for this was that the oxygen transfer was reduced by the additional top layer so far that suspended organic matter could not any longer be degraded in between loadings. Therefore clogging of the filter occurred.


2021 ◽  
Author(s):  
Océane Gilibert ◽  
Dan Tam Costa ◽  
Sabine Sauvage ◽  
Didier Orange ◽  
Yvan Capowiez ◽  
...  

<p>Wetlands are known for their natural service of water quality regulation. The hyporheic zones of the rivers filter and purify the surface water from the stream and infiltrated waters in soil nearby through the riparian zone. This purification service occurs because of a synergy between the substrate and its biodiversity (including plants, bacteria and other invertebrates). Our study deals with constructed wetlands (CW) as a nature-based solution mimicking wetlands water purification process, to purify wastewaters. The REUSE technology of CW is based on the use of specific layers of gravels and sands inside a close concrete structure, planted with specific sub-aquatic plants, where wastewaters or runoff of stormwaters are introduced to be filtered. The technology of Vertical Flow Constructed Wetlands (VFCW) reproduces the water flux observed in the riparian zone with a gravity flow of water. It is composed of reeds planted on a sandy layer (Ø 0-4 mm) and succession of gravel layers. This substrate can be saturated or unsaturated to reproduce the functioning of the hyporheic zone or the riparian zone respectively. By the time, the substrate is colonized by a community of bacteria producing biofilms which capture the residual organic matter from wastewaters to mineralize them. However, the VFCW substrates tend to clog over time due to the accumulation of organic matter and biofilms. Many studies consider earthworms as one of the solutions to alleviate this clogging, thanks to their burrows recreating macropores and preferential channels which help to improve the dispersion of water into the deep soil. The main goal of this study is to assess the impact of earthworm activities on the hydraulic conductivity of columns composed with the same substrate used in the VFCW. Different densities of earthworms (Eisenia fetida) were introduced (0, 100, 500, 1000 g of earthworms/m²) in these columns to be monitored for 37 days. The hydraulic conductivity was measured every 7 days, aside from day 23 with the addition of 40 g of peat bedding on column surfaces to simulate a high organic matter input. Columns with earthworm density superior to 500 g/m² shows an amelioration of their hydraulic conductivity after 21 days. These densities are also able to restore the hydraulic conductivity of the column in less than 7 days after the setting of clogged condition due to the organic matter input (peat bedding) at the sediment surface. This study showed that the burrowing activity of E. fetida improves the hydraulic flux of a sandy substrate and this impact is dependent on the earthworm density introduced. So, the addition of earthworms in the VFCW could serve as a prevention against clogging.</p>


1999 ◽  
Vol 40 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Trond Mæhlum ◽  
Per Stålnacke

This paper outlines the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs). Three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described. Particular attention is devoted to: (1) aerobic pre-treatment in vertical-flow filters, (2) filter media with high phosphorus (P) sorption capacity, and (3) the treatment efficiency during winters. Aerobic pre-treatment followed by CW units including P sorption media removed most organic matter (BOD> 75%), P (> 90%) and total and ammonia N (40-80%). P retention was relatively stable in wetland filters, both with lightweight aggregates and ferruginous sand during 3-6 years of monitoring. Iron-rich sand from Bsh and Bs horizons of ferro-humic podzols was efficient for P sorption, but removal efficiencies of COD, TOC and SS were negative. The differences in efficiency between cold and warm periods were less than 10 percentage points for all parameters. It is anticipated that temperature effects are partially compensated by the large hydraulic retention time. The findings suggest that HSF systems do not require vegetation.


2021 ◽  
Author(s):  
Waldir Nagel Schirmer ◽  
Erivelton César Stroparo ◽  
Marlon André Capanema ◽  
Douglas Luiz Mazur ◽  
José Fernando Thomé Jucá ◽  
...  

Abstract Biofilters have been recognized as key technology in the mitigation of greenhouse gases (GHG) emitted by landfills. This study aimed to evaluate the methane (an important GHG) oxidation efficiencies of two experimental biofilters at the municipal landfill of Guarapuava (Brazil) under normal conditions (control column), just using landfill cover soil with low organic matter content, and improved, exploiting dried scum from municipal wastewater treatment plant (SWWTP) mixed with the cover soil (enriched column, with a high organic matter content). The influence of parameters such as the methane inlet loading rates (22 and 44 gCH4.m− 2.d− 1), temperatures, methane concentration in the raw biogas, carbon/nitrogen ratio and moisture content of the packing materials on the oxidation of methane was also evaluated during 25 campaigns. The campaigns with the lowest methane loading rates applied to the biofilters showed the best methane oxidation efficiencies (98.4% and 89.5% in the enriched and control columns, respectively) as compared to campaigns with a higher load (92.6% and 82.6% in the enriched and control columns, respectively). In addition to the loading rates, the methane oxidation efficiencies were highly influenced by the organic matter content and C/N ratio of the packing materials evaluated.


Sign in / Sign up

Export Citation Format

Share Document