Inhibition of glutamatergic transmission and neuronal excitability by oxycodone in the rat hippocampal CA3 neurons

Author(s):  
Cheng-Wei Lu ◽  
Tzu-Yu Lin ◽  
Shu-Kuei Huang ◽  
Kuan-Ming Chiu ◽  
Ming-Yi Lee ◽  
...  

Oxycodone, a semisynthetic opioid analgesic with actions similar to morphine, is extensively prescribed for treatment of moderate to severe acute pain. Given that glutamate plays a crucial role in mediating pain transmission, the propose of this study was to investigate the effect of oxycodone on glutamatergic synaptic transmission in rat hippocampal CA3 area, which is associated with the modulation of nociceptive perception. Whole-cell patch-clamp recordings revealed that oxycodone effectively reduced presynaptic glutamate release, as detected by decreased frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), without eliciting significant changes in the amplitudes of sEPSCs and mEPSCs and glutamate-evoked inward currents. The inhibitory effect of oxycodone on the frequency of sEPSCs was blocked by the nonselective opioid receptor antagonist naloxone. In addition, oxycodone suppressed burst firing induced by 4-aminopyridine and tonic repetitive firing evoked by the applied depolarizing current. These results suggest that oxycodone inhibits spontaneous presynaptic glutamate release possibly by activating opioid receptors and consequently suppressing the neuronal excitability of hippocampal CA3 neurons.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Licong Li ◽  
Jin Zhou ◽  
Hongji Sun ◽  
Jing Liu ◽  
Hongrui Wang ◽  
...  

Gamma-aminobutyric acid (GABA) is critical for proper neural network function and can activate astrocytes to induce neuronal excitability; however, the mechanism by which astrocytes transform inhibitory signaling to excitatory enhancement remains unclear. Computational modeling can be a powerful tool to provide further understanding of how GABA-activated astrocytes modulate neuronal excitation. In the present study, we implemented a biophysical neuronal network model to investigate the effects of astrocytes on excitatory pre- and postsynaptic terminals following exposure to increasing concentrations of external GABA. The model completely describes the effects of GABA on astrocytes and excitatory presynaptic terminals within the framework of glutamatergic gliotransmission according to neurophysiological findings. Utilizing this model, our results show that astrocytes can rapidly respond to incoming GABA by inducing Ca2+ oscillations and subsequent gliotransmitter glutamate release. Elevation in GABA concentrations not only naturally decreases neuronal spikes but also enhances astrocytic glutamate release, which leads to an increase in astrocyte-mediated presynaptic release and postsynaptic slow inward currents. Neuronal excitation induced by GABA-activated astrocytes partly counteracts the inhibitory effect of GABA. Overall, the model helps to increase knowledge regarding the involvement of astrocytes in neuronal regulation using simulated bath perfusion of GABA, which may be useful for exploring the effects of GABA-type antiepileptic drugs.


2013 ◽  
Vol 110 (5) ◽  
pp. 1047-1061 ◽  
Author(s):  
Mark C. Bellingham

Riluzole is the sole treatment for amyotrophic lateral sclerosis (ALS), but its therapeutically relevant actions on motor neurons are not well defined. Whole cell patch-clamp recordings were made from hypoglossal motor neurons (HMs, n = 25) in brain stem slices from 10- to 23-day-old rats anesthetized with pentobarbital sodium to investigate the hypothesis that riluzole inhibits HMs by multiple mechanisms. Riluzole (20 μM) hyperpolarized HMs by decreasing an inward current, inhibited voltage-gated persistent Na+ and Ca2+ currents activated by slow voltage ramps, and negatively shifted activation of the hyperpolarization-activated cationic current ( IH). Repetitive firing of HMs was strongly inhibited by riluzole, which also increased action potential threshold voltage and rheobase and decreased amplitude and maximum rise slope but did not alter the maximal afterhyperpolarization amplitude or decay time constant. HM rheobase was inversely correlated with persistent Na+ current density. Glutamatergic synaptic transmission was inhibited by riluzole by both pre- and postsynaptic effects. Riluzole decreased activity-dependent glutamate release, as shown by decreased amplitude of evoked and spontaneous excitatory postsynaptic currents (EPSCs), decreased paired-pulse ratio, and decreased spontaneous, but not miniature, EPSC frequency. However, riluzole also decreased miniature EPSC amplitude and the inward current evoked by local application of glutamate onto HMs, suggesting a reduction of postsynaptic glutamate receptor sensitivity. Riluzole thus has a marked inhibitory effect on HM activity by membrane hyperpolarization, decreasing firing and inhibiting glutamatergic excitation by both pre- and postsynaptic mechanisms. These results broaden the range of mechanisms controlling motor neuron inhibition by riluzole and are relevant to researchers and clinicians interested in understanding ALS pathogenesis and treatment.


2017 ◽  
Vol 114 (29) ◽  
pp. 7719-7724 ◽  
Author(s):  
Michael Seagar ◽  
Michael Russier ◽  
Olivier Caillard ◽  
Yves Maulet ◽  
Laure Fronzaroli-Molinieres ◽  
...  

Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.


Author(s):  
Manar Mohammed El Tabaa ◽  
Samia Salem Sokkar ◽  
Ehab Sayed Ramdan ◽  
Inas Zakria Abd El Salam ◽  
Anis Anis

AbstractBisphenol A (BPA) is one of the chemicals that is firmly accompanied by hippocampal neuronal injury. As oxidative stress appears to be a major contributor to neurotoxicity induced by BPA, antioxidants with remarkable neuroprotective effects can play a valuable protective role. Around the world, ( −)-epigallocatechin-3-gallate (EGCG) was one of the most popular antioxidants that could exert a beneficial neuroprotective role. Here, we examined the potential efficiency of EGCG against neurotoxicity induced by BPA in the hippocampal CA3 region of the rat model. This study revealed that EGCG was unable to abrogate the significant decrease in circulating adiponectin level and hippocampal superoxide dismutase activity as well as an increase in hippocampal levels of nitric oxide and malondialdehyde. Notably, EGCG failed to antagonize the oxidative inhibitory effect of BPA on hippocampal neurotransmission and its associated cognitive deficits. In addition, the histopathological examination with immunohistochemical detection of caspase-3 and NF-kB/p65 emphasized that EGCG failed to protect hippocampal CA3 neurons from apoptotic and necrotic effects induced by BPA. Our study revealed that EGCG showed no protective role against the neurotoxic effect caused by BPA, which may be attributed to its failure to counteract the BPA-induced oxidative stress in vivo. The controversial effect is probably related to EGCG’s ability to impede BPA glucuronidation and thus, its detoxification. That inference requires further additional experimental and clinical studies. Graphical abstract


2003 ◽  
Vol 89 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Noriaki Matsumoto ◽  
Eiichi Kumamoto ◽  
Hidemasa Furue ◽  
Megumu Yoshimura

An ischemia-induced change in glutamatergic transmission was investigated in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique; the ischemia was simulated by superfusing an oxygen- and glucose-free medium (ISM). Following ISM superfusion, 21 of 37 SG neurons tested produced an outward current (23 ± 4 pA at a holding potential of −70 mV), which was followed by a slow and subsequent rapid inward current; the remaining neurons had only inward currents. During such a change in holding currents, spontaneous excitatory postsynaptic currents (EPSCs) were remarkably decreased in a frequency with time (half-decay time of the frequency: about 65 s). The frequency of spontaneous EPSCs was reduced to 28 ± 13% ( n = 37) of the control level during the generation of the slow inward current (about 4 min after the beginning of ISM superfusion) without a change in the amplitude of spontaneous EPSCs. When ISM was superfused together with either bicuculline (10 μM) or CGP35348 (20 μM; GABAA and GABAB receptor antagonists, respectively), spontaneous EPSC frequency reduced by ISM recovered to the control level and then the frequency markedly increased [by 325 ± 120% ( n = 22) and 326 ± 91% ( n = 17), respectively, 4 min after ISM superfusion]; this alteration in the frequency was not accompanied by a change in spontaneous EPSC amplitude. Superfusing TTX (1 μM)-containing ISM resulted in a similar recovery of spontaneous EPSC frequency and following increase (by 328 ± 26%, n = 12) in the frequency; strychnine (1 μM) did not affect ISM-induced changes in spontaneous EPSC frequency ( n = 5). It is concluded that the ischemic simulation inhibits excitatory transmission to SG neurons, whose action is in part mediated by the activation of presynaptic GABAAand GABAB receptors, probably due to GABA released from interneurons as a result of an ischemia-induced increase in neuronal activities. This action might protect SG neurons from an excessive excitation mediated by l-glutamate during ischemia.


2018 ◽  
Vol 120 (3) ◽  
pp. 1264-1273 ◽  
Author(s):  
Min-Chul Shin ◽  
Kiku Nonaka ◽  
Toshitaka Yamaga ◽  
Masahito Wakita ◽  
Hironari Akaike ◽  
...  

The current electrophysiological study investigated the functional roles of high- and low-voltage-activated Ca2+ channel subtypes on glutamatergic small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons. Experiments combining both the “synapse bouton” preparation and single-pulse focal stimulation technique were performed using the conventional whole cell patch configuration under voltage-clamp conditions. Nifedipine, at a high concentration, and BAY K 8644 inhibited and facilitated the glutamatergic excitatory postsynaptic currents (eEPSCs) that were evoked by 0.2-Hz stimulation, respectively. However, these drugs had no effects on spontaneous EPSCs (sEPSCs). Following the use of a high stimulation frequency of 3 Hz, however, nifedipine markedly inhibited eEPSCs at the low concentration of 0.3 µM. Moreover, ω-conotoxin GVIA and ω-agatoxin IVA significantly inhibited both sEPSCs and eEPSCs. Furthermore, SNX-482 slightly inhibited eEPSCs. R(−)-efonidipine had no effects on either sEPSCs or eEPSCs. It was concluded that glutamate release from SMFTs depends largely on Ca2+ entry through N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. The contribution of L-type Ca2+ channels to eEPSCs was small at low-firing SMFTs but more significant at high-firing SMFTs. T-type Ca2+ channels did not appear to be involved in neurotransmission at SMFTs. NEW & NOTEWORTHY Action potential-evoked glutamate release from small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons is regulated by high-threshold but not low-threshold Ca2+ channel subtypes. The functional contribution mainly depends on N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. However, in SMFTs stimulated at a high 3-Hz frequency, L-type Ca2+ channels contributed significantly to the currents. The present results are consistent with previous findings from fluorometric studies of large mossy fiber boutons.


2007 ◽  
Vol 98 (2) ◽  
pp. 581-593 ◽  
Author(s):  
Zhi Liu ◽  
Yo Otsu ◽  
Cristina Vasuta ◽  
Hiroyuki Nawa ◽  
Timothy H. Murphy

Stimulation of presynaptic nicotinic acetylcholine receptors (nAChRs) increases the frequency of miniature excitatory synaptic activity (mEPSCs) to a point where they can promote cell firing in hippocampal CA3 neurons. We have evaluated whether nicotine regulation of miniature synaptic activity can be extended to inhibitory transmission onto striatal medium spiny projection neurons (MSNs) in acute brain slices. Bath application of micromolar nicotine typically induced 12-fold increases in the frequency of miniature inhibitory synaptic currents (mIPSCs). Little effect was observed on the amplitude of mIPSCs or mEPSCs under these conditions. Nicotine stimulation of mIPSCs was dependent on entry of extracellular calcium because removal of calcium from perfusate was able to block its action. To assess the potential physiological significance of the nicotine-stimulated increase in mIPSC frequency, we also examined the nicotine effect on evoked IPSCs (eIPSCs). eIPSCs were markedly attenuated by nicotine. This effect could be attributed to two potential mechanisms: transmitter depletion due to extremely high mIPSC rates and/or a reduction in presynaptic excitability associated with nicotinic depolarization. Treatment with low concentrations of K+ was able to in part mimic nicotine's stimulatory effect on mIPSCs and inhibitory effect on eIPSCs. Current-clamp recordings confirmed a direct depolarizing action of nicotine that could dampen eIPSC activity leading to a switch to striatal inhibitory synaptic transmission mediated by tonic mIPSCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oscar B. Alcoreza ◽  
Dipan C. Patel ◽  
Bhanu P. Tewari ◽  
Harald Sontheimer

Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System xc-, a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yi Cheng ◽  
Nan Song ◽  
Renkai Ge ◽  
Yue Dai

Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P < 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P < 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P < 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P < 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lan Xiao ◽  
Vinay Kumar Sharma ◽  
Leila Toulabi ◽  
Xuyu Yang ◽  
Cheol Lee ◽  
...  

AbstractStress leads to brain pathology including hippocampal degeneration, cognitive dysfunction, and potential mood disorders. Hippocampal CA3, a most stress-vulnerable region, consists of pyramidal neurons that regulate cognitive functions e.g. learning and memory. These CA3 neurons express high levels of the neuroprotective protein, neurotrophic factor-α1 (NF-α1), also known as carboxypeptidase E (CPE), and receive contacts from granule cell projections that release BDNF which has neuroprotective activity. Whether NF-α1-CPE and/or BDNF are critical in protecting these CA3 neurons against severe stress-induced cell death is unknown. Here we show that social combined with the physical stress of maternal separation, ear tagging, and tail snipping at weaning in 3-week-old mice lacking NF-α1-CPE, led to complete hippocampal CA3 degeneration, despite having BDNF and active phosphorylated TrkB receptor levels similar to WT animals. Mice administered TrkB inhibitor, ANA12 which blocked TrkB phosphorylation showed no degeneration of the CA3 neurons after the weaning stress paradigm. Furthermore, transgenic knock-in mice expressing CPE-E342Q, an enzymatically inactive form, replacing NF-α1-CPE, showed no CA3 degeneration and exhibited normal learning and memory after the weaning stress, unlike NF-α1-CPE-KO mice. Mechanistically, we showed that radio-labeled NF-α1-CPE bound HT22 hippocampal cells in a saturable manner and with high affinity (Kd = 4.37 nM). Subsequently, treatment of the HT22cpe−/− cells with NF-α1-CPE or CPE-E342Q equivalently activated ERK signaling and increased BCL2 expression to protect these neurons against H2O2-or glutamate-induced cytotoxicity. Our findings show that NF-α1-CPE is more critical compared to BDNF in protecting CA3 pyramidal neurons against stress-induced cell death and cognitive dysfunction, independent of its enzymatic activity.


Sign in / Sign up

Export Citation Format

Share Document