Bioinformatics analysis of the auxin response factor gene family in Prunus persica

2019 ◽  
Vol 99 (2) ◽  
pp. 232-242
Author(s):  
Liping Guo ◽  
Jianzhou Gao ◽  
Jaime A. Teixeira da Silva ◽  
Xiaonan Yu

Auxin plays an important role in various aspects of plant growth and development. Auxin response factors (ARFs) are plant-specific transcription factors that regulate the expression of auxin-responsive genes by binding with auxin response elements (AuxinREs) in the promoter region of such genes. In this study, a genome-wide analysis of the ARF genes in Prunus persica was carried out using the latest updated genomics data of this plant. A total of 17 ARF genes were identified and were named PpARF1 to PpARF17. A comprehensive overview of these PpARFs was undertaken, including a phylogenetic analysis and analysis of gene structures, conserved motifs and domains, chromosome location, cis-elements in the promoter region, and gene expression patterns. The 17 PpARF genes were distributed over eight chromosomes. All identified PpARF proteins had an ARF domain and a typical B3-DNA-binding domain that consisted of two α-helixes and seven β-sheets. Some of the PpARF proteins also had an Aux/IAA domain. Phylogenetic analysis categorized PpARF proteins into four groups. PpARF genes had many elements related to stress responses in the promotor region and showed distinct expression levels in leaves and roots. The present study provides basic information about the ARF gene family in Prunus persica and enables further verification of candidate genes related to plant growth.

2020 ◽  
Vol 21 (18) ◽  
pp. 6594
Author(s):  
Shuting Zhang ◽  
Qin Zhou ◽  
Feng Chen ◽  
Lan Wu ◽  
Baojun Liu ◽  
...  

The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Genome ◽  
2019 ◽  
Vol 62 (9) ◽  
pp. 609-622 ◽  
Author(s):  
Weidong Zhu ◽  
Wei Tan ◽  
Qiulin Li ◽  
Xiugui Chen ◽  
Junjuan Wang ◽  
...  

Mitogen-activated protein kinase kinase kinases (MAPKKKs) are important components of MAPK cascades, which have different functions during developmental processes and stress responses. To date, there has been no systematic investigation of this gene family in the diploid cotton Gossypium arboreum L. In this study, a genome-wide survey was performed that identified 78 MAPKKK genes in G. arboreum. Phylogenetic analysis classified these genes into three subgroups: 14 belonged to ZIK, 20 to MEKK, and 44 to Raf. Chromosome location, phylogeny, and the conserved protein motifs of the MAPKKK gene family in G. arboreum were analyzed. The MAPKKK genes had a scattered genomic distribution across 13 chromosomes. The members in the same subfamily shared similar conserved motifs. The MAPKKK expression patterns were analyzed in mature leaves, stems, roots, and at different ovule developmental stages, as well as under salt and drought stresses. Transcriptome analysis showed that 76 MAPKKK genes had different transcript accumulation patterns in the tested tissues and 38 MAPKKK genes were differentially expressed in response to salt and drought stresses. These results lay the foundation for understanding the complex mechanisms behind MAPKKK-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.


2018 ◽  
Author(s):  
Guodong Chen ◽  
Xiaolong Li ◽  
Xin qiao ◽  
Jiaming Li ◽  
Li Wang ◽  
...  

AbstractS-type anion channels (SLAC/SLAHs), which play important roles in plant anion (such as nitrate and chloride) transport, growth and development, abiotic stress responses and hormone signaling. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified SLAC/SLAH gene family members in pear (Pyrus bretschneideri) and four other species of Rosaceae (Malus domestica, Prunus persica, Fragaria vesca and Prunus mume). A total of 21 SLAC/SLAH genes were identified from the five Rosaceae species. Based on the structural characteristics and a phylogenetic analysis of these genes, the SLAC/SLAH gene family could be classified into three main groups (I, II and III). The evolutionary analysis showed that the SLAC/SLAH gene family was comparatively conserved during the evolution of Rosaceae species. Transcriptome data demonstrated that PbrSLAC/SLAH genes were detected in all parts of the pear. However, PbrSLAC1 showed a higher expression level in leaf, while PbrSLAH2/3 was mainly expressed in roots. In addition, PbrSLAC/SLAH genes were only located on the plasma membrane in transient expression experiments in Arabidopsis protoplasts cells. These results provide valuable information that increases our understanding of the evolution, expression and functions of the SLAC/SLAH gene family in higher plants.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Xia He ◽  
Jing-jian Li ◽  
Yuan Chen ◽  
Jia-qi Yang ◽  
Xiao-yang Chen

AbstractThe WRKY gene family is an ancient plant transcription factor (TF) family with a vital role in plant growth and development, especially in response to biotic and abiotic stresses. Although many researchers have studied WRKY TFs in numerous plant species, little is known of them in Tartary buckwheat (Fagopyrum tataricum). Based on the recently reported genome sequence of Tartary buckwheat, we identified 78 FtWRKY proteins that could be classified into three major groups. All 77 WRKY genes were distributed unevenly across all eight chromosomes. Exon–intron analysis and motif composition prediction revealed the complexity and diversity of FtWRKYs, indicating that WRKY TFs may be of significance in plant growth regulation and stress response. Two separate pairs of tandem duplication genes were found, but no segmental duplications were identified. Overall, most orthologous gene-pairs between Tartary and common buckwheat evolved under strong purifying selection. qRT-PCR was used to analyze differences in expression among four FtWRKYs (FtWRKY6, 74, 31, and 7) under salt, drought, cold, and heat treatments. The results revealed that all four proteins are related to abiotic stress responses, although they exhibited various expression patterns. In particular, the relative expression levels of FtWRKY6, 74, and 31 were significantly upregulated under salt stress, while the highest expression of FtWRKY7 was observed from heat treatment. This study provides comprehensive insights into the WRKY gene family in Tartary buckwheat, and can support the screening of additional candidate genes for further functional characterization of WRKYs under various stresses.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kangfeng Cai ◽  
Fanrong Zeng ◽  
Junmei Wang ◽  
Guoping Zhang

Abstract Background HAK/KUP/KT (High-affinity K+ transporters/K+ uptake permeases/K+ transporters) is the largest potassium transporter family in plants, and plays pivotal roles in K+ uptake and transport, as well as biotic and abiotic stress responses. However, our understanding of the gene family in barley (Hordeum vulgare L.) is quite limited. Results In the present study, we identified 27 barley HAK/KUP/KT genes (hereafter called HvHAKs) through a genome-wide analysis. These HvHAKs were unevenly distributed on seven chromosomes, and could be phylogenetically classified into four clusters. All HvHAK protein sequences possessed the conserved motifs and domains. However, the substantial difference existed among HAK members in cis-acting elements and tissue expression patterns. Wheat had the most orthologous genes to barley HAKs, followed by Brachypodium distachyon, rice and maize. In addition, six barley HAK genes were selected to investigate their expression profiling in response to three abiotic stresses by qRT-PCR, and their expression levels were all up-regulated under salt, hyperosmotic and potassium deficiency treatments. Conclusion Twenty seven HAK genes (HvHAKs) were identified in barley, and they differ in tissue expression patterns and responses to salt stress, drought stress and potassium deficiency.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dandan Li ◽  
Xintong Liu ◽  
Lizhe Shu ◽  
Hua Zhang ◽  
Shiya Zhang ◽  
...  

Abstract Background The AP2/ERFs belong to a large family of transcription factors in plants. The AP2/ERF gene family has been identified as a key player involved in both biotic and abiotic stress responses in plants, however, no comprehensive study has yet been carried out on the AP2/ERF gene family in rose (Rosa sp.), the most important ornamental crop worldwide. Results The present study comprises a genome-wide analysis of the AP2/ERF family genes (RcERFs) in the rose, involving their identification, gene structure, phylogenetic relationship, chromosome localization, collinearity analysis, as well as their expression patterns. Throughout the phylogenetic analysis, a total of 131 AP2/ERF genes in the rose genome were divided into 5 subgroups. The RcERFs are distributed over all the seven chromosomes of the rose, and genome duplication may have played a key role in their duplication. Furthermore, Ka/Ks analysis indicated that the duplicated RcERF genes often undergo purification selection with limited functional differentiation. Gene expression analysis revealed that 23 RcERFs were induced by infection of the necrotrophic fungal pathogen Botrytis cinerea. Presumably, these RcERFs are candidate genes which can react to the rose’s resistance against Botrytis cinerea infection. By using virus-induced gene silencing, we confirmed that RcERF099 is an important regulator involved in the B.cinerea resistance in the rose petal. Conclusion Overall, our results conclude the necessity for further study of the AP2/ERF gene family in rose, and promote their potential application in improving the rose when subjected to biological stress.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7509 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background VQ proteins, the plant-specific transcription factors, are involved in plant development and multiple stresses; however, only few articles systematic reported the VQ genes in soybean. Methods In total, we identified 75 GmVQ genes, which were classified into 7 groups (I-VII). Conserved domain analysis indicated that VQ gene family members all contain the VQ domains. VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed that cis-elements related to stress responses, phytohormone responses and controlling physical as well as reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were showed expressing in nine tissues, suggesting their putative function in many aspects of plant growth and development as well as response to stress in Glycine max. Results This study aims to understand the roles of VQ genes in various development processes and their expression patterns in responses to stimuli. Our results provide basic information in identification and classification of GmVQ genes. Further experimental analysis will allows us to know the functions of GmVQs participation in plant growth and stress responses.


2021 ◽  
Author(s):  
Khadiza Khatun ◽  
Sourav Debnath ◽  
Arif Hasan Khan Robin ◽  
Antt Htet Wai ◽  
Ujjal Kumar Nath ◽  
...  

Abstract BackgroundCONSTANS-like (CO-like, COL) is a putative zinc-finger transcription factor family that plays a key role in the control of flowering time in photoperiod-sensitive plants. Besides, the COL family protein is also involved in plant development, responses to stresses. However, information on plant development and stress response related function has not been previously performed in any solanaceous crop. In this study, a genome-wide analysis of COL gene family was conducted in Petunia hybrida cv. Mirage Rose to elucidate their roles in organ development and stress response.ResultsA total of 15 COL genes were identified in petunia. Based on their amino acid sequence identity and domain composition they were phylogenetically classified into three groups those are conserved among the flowering plants. Similar gene structure and motif distribution were observed in the same group. Subcellular localization assays demonstrated that all PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed in various tissues. The expression patterns of PaCOL genes were observed under various abiotic and phytohormone treatment to explore their relatedness in different stresses. Moreover, several stress and light-responsive cis-elements were detected for different PaCOL genes.ConclusionThe COL genes of petunia genome, those were clustered into three distinct groups, are conserved among flowering plants, were expressed in different tissues and induced under multiple abiotic stress treatments indicating their involvement in plant growth and development and stress response mechanism. This work laid the significant foundation for functional characterization of PaCOL gene family to uncover their biological roles in plant growth, development and in stress response.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6677 ◽  
Author(s):  
Yanqing Zhang ◽  
Zaohai Zeng ◽  
Chengjie Chen ◽  
Caiqin Li ◽  
Rui Xia ◽  
...  

Auxin response factors (ARFs) play fundamental roles in modulating various biological processes including fruit development and abscission via regulating the expression of auxin response genes. Currently, little is known about roles of ARFs in litchi (Litchi chinensis Sonn.), an economically important subtropical fruit tree whose production is suffering from fruit abscission. In this study, a genome-wide analysis of ARFs was conducted for litchi, 39 ARF genes (LcARFs) were identified. Conserved domain analysis showed that all the LcARFs identified have the signature B3 DNA-binding (B3) and ARF (Aux_rep) domains, with only 23 members having the dimerization domain (Aux_IAA). The number of exons in LcARF genes ranges from 2 to 16, suggesting a large variation for the gene structure of LcARFs. Phylogenetic analysis showed that the 39 LcARFs could be divided into three main groups: class I, II, and III. In total, 23 LcARFs were found to be potential targets of small RNAs, with three conserved and one novel miRNA-ARF (miRN43-ARF9) regulatory pathways discovered in litchi. Expression patterns were used to evaluate candidate LcARFs involved in various developmental processes, especially in flower formation and organ abscission. The results revealed that most ARF genes likely acted as repressors in litchi fruit abscission, that is, ARF2D/2E, 7A/7B, 9A/9B, 16A/16B, while a few LcARFs, such as LcARF5A/B, might be positively involved in this process. These findings provide useful information and resources for further studies on the roles of ARF genes in litchi growth and development, especially in the process of fruit abscission.


Sign in / Sign up

Export Citation Format

Share Document