FURTHER OBSERVATIONS ON INTERFERENCE BETWEEN LYMPHOCYTIC CHORIOMENINGITIS AND MM VIRUSES

1950 ◽  
Vol 28e (5) ◽  
pp. 245-255 ◽  
Author(s):  
A. J. Rhodes ◽  
Marion Chapman

Well marked interference is demonstrable when LCM virus is injected cerebrally in hamsters and MM virus peritoneally four or seven days later, the usual paralyzing action of the latter virus being prevented. This interference can still be demonstrated when the MM virus is injected 30 days after the LCM virus, but not when the sequence of the injections is reversed. The unparalyzed survivors of a successful interference experiment are actively immune to LCM virus. The brain, cord, and viscera of survivors, tested 10 and 11 days after the beginning of an interference experiment, contain the same amount of LCM virus as the organs of controls inoculated with this virus alone. The same organs, however, contain significantly less MM virus than the organs of controls inoculated with MM virus only. It appears that in a successful interference experiment, MM virus is prevented from multiplying in the organs of the hamster for at least six or seven days. Observations on the distribution of LCM and MM viruses in the viscera, brain, and cord of normal hamsters show that in both instances the blood is quickly invaded, and thereafter viral growth occurs in the viscera as well as the central nervous system. The reaction between the two viruses probably therefore occurs in viscera as well as central nervous system.

2005 ◽  
Vol 79 (12) ◽  
pp. 7514-7527 ◽  
Author(s):  
Shalina S. Ousman ◽  
Jianping Wang ◽  
Iain L. Campbell

ABSTRACT Interferon regulatory factors (IRFs) are a family of transcription factors involved in the regulation of the interferons (IFNs) and other genes that may have an essential role in antiviral defense in the central nervous system, although this is currently not well defined. Therefore, we examined the regulation of IRF gene expression in the brain during viral infection. Several IRF genes (IRF-2, -3, -5, -7, and -9) were expressed at low levels in the brain of uninfected mice. Following intracranial infection with lymphocytic choriomeningitis virus (LCMV), expression of the IRF-7 and IRF-9 genes increased significantly by day 2. IRF-7 and IRF-9 gene expression in the brain was widespread at sites of LCMV infection, with the highest levels in infiltrating mononuclear cells, microglia/macrophages, and neurons. IRF-7 and IRF-9 gene expression was increased in LCMV-infected brain from IFN-γ knockout (KO) but not IFN-α/βR KO animals. In the brain, spleen, and liver or cultured glial and spleen cells, IRF-7 but not IRF-9 gene expression increased with delayed kinetics in the absence of STAT1 but not STAT2 following LCMV infection or IFN-α treatment, respectively. The stimulation of IRF-7 gene expression by IFN-α in glial cell culture was prevented by cycloheximide. Thus, (i) many of the IRF genes were expressed constitutively in the mouse brain; (ii) the IRF-7 and IRF-9 genes were upregulated during viral infection, a process dependent on IFN-α/β but not IFN-γ; and (iii) IRF-7 but not IRF-9 gene expression can be stimulated in a STAT1-independent but STAT2-dependent fashion via unidentified indirect pathways coupled to the activation of the IFN-α/β receptor.


2006 ◽  
Vol 81 (2) ◽  
pp. 860-871 ◽  
Author(s):  
Christie Wacher ◽  
Marcus Müller ◽  
Markus J. Hofer ◽  
Daniel R. Getts ◽  
Regina Zabaras ◽  
...  

ABSTRACT The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations. Expression of the ISG-54 gene also increased but to lower levels and with a more restricted distribution. Although expression of the ISG-49, ISG-54, and ISG-56 genes was increased in the brains of LCMV-infected STAT1 and STAT2 knockout (KO) mice, this was blunted, delayed, and restricted to the choroid plexus, meninges, and endothelium. ISG-56 protein was regulated in parallel with the corresponding RNA transcript in the brain during LCMV infection in wild-type and STAT KO mice. Similar changes in ISG-49, ISG-54, and ISG-56 RNA levels and ISG-56 protein levels were observed in the brains of wild-type mice following infection with WNV. Thus, the ISG-49, ISG-54, and ISG-56 genes are coordinately upregulated in the brain during LCMV and WNV infection; this upregulation, in the case of LCMV, was totally (neurons) or partially (non-neurons) dependent on the IFN-signaling molecules STAT1 and STAT2. These findings suggest a dominant role for the ISG-49, ISG-54, and ISG-56 genes in the host response to different viruses in the central nervous system, where, particularly in neurons, these genes may have nonredundant functions.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


Author(s):  
Asfree Gwanyanya ◽  
Christie Nicole Godsmark ◽  
Roisin Kelly-Laubscher

Abstract: Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer’s disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


1908 ◽  
Vol 54 (226) ◽  
pp. 560-561
Author(s):  
David Orr ◽  
R. G. Rows

At a quarterly meeting of this Association held last year at Nottingham, we showed the results of our experiments with toxins upon the spinal cord and brain of rabbits. Our main conclusion was, that the central nervous system could be infected by toxins passing up along the lymph channels of the perineural sheath. The method we employed in our experiments consisted in placing a celloidin capsule filled with a broth culture of an organism under the sciatic nerve or under the skin of the cheek; and we invariably found a resulting degeneration in the spinal cord or brain, according to the situation of the capsule. These lesions we found to be identical in morphological type and anatomical distribution with those found in the cord of early tabes dorsalis and in the brain and cord of general paralysis of the insane. The conclusion suggested by our work was that these two diseases, if toxic, were most probably infections of lymphogenous origin.


Sign in / Sign up

Export Citation Format

Share Document