Niche expansion of the shorthorn sculpin (Myoxocephalus scorpius) to Arctic waters is supported by a thermal independence of cardiac performance at low temperature

2013 ◽  
Vol 91 (8) ◽  
pp. 573-580 ◽  
Author(s):  
A.P. Farrell ◽  
J. Altimiras ◽  
C.E. Franklin ◽  
M. Axelsson

Cardiovascular adaptations that permit successful exploitation of polar marine waters by fish requires a capacity to negate or compensate for the depressive effects of low temperatures on physiological processes. Here, we examined the effects of acute and chronic temperature change on the maximum cardiac performance of shorthorn sculpin (Myoxocephalus scorpius (L., 1758)) captured above the Arctic Circle. Our aim was to establish if the sculpin’s success at low temperatures was achieved through thermal independence of cardiac function or via thermal compensation as a result of acclimation. Maximum cardiac performance was assessed at both 1 and 6 °C with a working perfused heart preparation that was obtained after fish had been acclimated to either 1 or 6 °C. Thus, tests were performed at the fish’s acclimation temperature and with an acute temperature change. Maximum cardiac output, which was relatively large (>50 mL·min−1·kg−1 body mass) for a benthic fish at a frigid temperature, was found to be independent of both acclimation temperature and test temperature. While maximum β-adrenergic stimulation produced positive chronotropy at both acclimation temperatures, inotropic effects were weak or absent. We conclude that thermal independence of cardiac performance at low temperature likely facilitated the exploitation of polar waters by the shorthorn sculpin.

ARCTIC ◽  
1982 ◽  
Vol 35 (2) ◽  
Author(s):  
Garth L. Fletcher ◽  
Richard F. Addison ◽  
Don Slaughter ◽  
Choy L. Hew

2018 ◽  
Vol 75 (12) ◽  
pp. 2390-2400 ◽  
Author(s):  
Silviya V. Ivanova ◽  
Steven T. Kessel ◽  
Justin Landry ◽  
Caitlin O’Neill ◽  
Montana F. McLean ◽  
...  

Sea ice reduction in the Arctic is allowing for increased vessel traffic and activity. Vessel noise is a known anthropogenic disturbance, but its effects on Arctic fish are largely unknown. Using acoustic telemetry — Vemco positioning system — we quantified the home ranges and fine-scale movement types (MT) of shorthorn sculpin (Myoxocephalus scorpius), a common benthic Arctic fish, in response to vessels and environmental drivers during open water over 3 years (2012–2014). Low overlap of core home ranges (50%) for all years and a change of overall MT proportions (significant in 2012 only) were observed when vessels were present compared with absent. However, changes in MTs associated with vessel presence were not consistent between years. Photoperiod was the only environmental driver that influenced (R2 = 0.32) MTs of sculpin. This is the first study of vessel impacts on Arctic fish using acoustic telemetry and demonstrates that individuals alter their behavior and home ranges when vessels are present. Given increasing vessel traffic in the Arctic, additional study on the impact of vessels on these ecosystems is warranted.


2019 ◽  
Vol 76 (4) ◽  
pp. 626-635 ◽  
Author(s):  
Justin J. Landry ◽  
Steve T. Kessel ◽  
Montana F. McLean ◽  
Silviya V. Ivanova ◽  
Nigel E. Hussey ◽  
...  

Shorthorn sculpin (Myoxocephalus scorpius) are among the most numerous consumers in the Arctic nearshore marine habitats. Despite this, little is known about their movement ecology or predator–prey interactions, particularly with Arctic cod (Boreogadus saida), an important forage fish in the Arctic. Using acoustic telemetry, the movements of tagged sculpin and cod were quantified based on specific locations using a Vemco positioning system during open water when both species were present in the near shore. Movement trajectories of sculpin distinguish three unique types: foraging and feeding behaviour and large transiting movements. The relative time of each of these movement types were correlated to biotic (presence of large numbers of acoustically tagged Arctic cod) and abiotic factors (percent ice coverage and temperature). This study provides unique data on the movement, feeding ecology, and behaviour of an abundant Arctic benthic fish that demonstrates similar movement types to temperate fish. However, further study is needed to quantify specifically the trophic interactions of these important fish and impact on food webs in the rapidly changing Arctic.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract Invar is an Fe-Ni alloy with 36% Ni content that exhibits the lowest expansion of known metals from very low temperatures up to approximately 230 deg C (445 deg F). Invar M93 is a cryogenic Invar with improved weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear and bend strength as well as fracture toughness and fatigue. It also includes information on low temperature performance as well as forming and joining. Filing Code: FE-143. Producer or source: Metalimphy Precision Alloys.


2014 ◽  
Vol 986-987 ◽  
pp. 80-83
Author(s):  
Xiao Xue Zhang ◽  
Zhen Feng Wang ◽  
Cui Hua Li ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

N-methyl-N-allylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1ATFSI) with substantial supercooling behavior is synthesized to develop low temperature electrolyte for lithium-ion batteries. Additive fluoroethylene carbonate (FEC) in LiTFSI/PYR1ATFSI/EC/PC/EMC is found that it can reduce the freezing point. LiFePO4/Li coin cells with the FEC-PYR1ATFSI electrolyte exhibit good capacity retention, reversible cycling behavior at low temperatures. The good performance can be attributed to the decrease in the freezing point and the polarization of the composite electrolyte.


1972 ◽  
Vol 25 (7) ◽  
pp. 1411 ◽  
Author(s):  
LE Lyons ◽  
LJ Warren

The low-temperature fluorescence spectrum of purified vapour-grown anthracene single crystals is presented and the free-exciton emission distinguished from a number of defect or impurity bands present even in the purest crystals. In assigning the observed bands the symmetry of the active vibrations and the origin of background fluorescence and deformation bands are discussed. The phonon structure in the region of the fluorescence origin was found to be almost completely b-polarized. Emission of electronic origin (25103 cm-1) was too weak to be observed. Polarization ratios of the principal vibronio bands at 5.6 K are given.


2014 ◽  
Vol 14 (3) ◽  
pp. 479-488 ◽  
Author(s):  
T. Backhaus ◽  
R. de la Torre ◽  
K. Lyhme ◽  
J.-P. de Vera ◽  
J. Meeßen

AbstractSeveral investigations on lichen photobionts (PBs) after exposure to simulated or real-space parameters consistently reported high viability and recovery of photosynthetic activity. These studies focused on PBs within lichen thalli, mostly exposed in a metabolically inactive state. In contrast, a recent study exposed isolated and metabolically active PBs to the non-terrestrial stressor UVC254 nm and found strong impairment of photosynthetic activity and photo-protective mechanisms (Meeßen et al. in 2014b). Under space and Mars conditions, UVC is accompanied by other stressors as extreme desiccation and low temperatures. The present study exposed the PBs of Buellia frigida and Circinaria gyrosa, to UVC in combination with desiccation and subzero temperatures to gain better insight into the combined stressors' effect and the PBs' inherent potential of resistance. These effects were examined by chlorophyll a fluorescence which is a good indicator of photosynthetic activity (Lüttge & Büdel in 2010) and widely used to test the viability of PBs after (simulated) space exposure. The present results reveal fast recovery of photosynthetic activity after desiccation and subzero temperatures. Moreover, they demonstrate that desiccation and cold confer an additional protective effect on the investigated PBs and attenuate the PBs' reaction to another stressor – even if it is a non-terrestrial one such as UVC. Besides other protective mechanisms (anhydrobiosis, morphological–anatomical traits and secondary lichen compounds), these findings may help to explain the high resistance of lichens observed in astrobiological studies.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


Sign in / Sign up

Export Citation Format

Share Document