scholarly journals Stable isotopic signatures in modern wood bison (Bison bison athabascae) hairs as telltale biomarkers of nutritional stress

2020 ◽  
Vol 98 (8) ◽  
pp. 505-514 ◽  
Author(s):  
Juliette Funck ◽  
Cade Kellam ◽  
C. Tom Seaton ◽  
Matthew J. Wooller

Assessing the challenges faced by wildlife populations is key to providing effective management but is problematic when dealing with populations in remote locations. Analyses of the stable carbon and nitrogen isotope composition (expressed as δ13C and δ15N values) of sequentially grown tissues, such as hairs, can be used to track changes in the eco-physiology of organisms. We generated δ13C and δ15N values from sequentially sampled (n = 465) hairs taken from wood bison (Bison bison athabascae Rhoads, 1898) (n = 27). Samples were taken from individuals prior to and after their release from captivity into the lower Innoko–Yukon river area of Alaska in 2015. Twenty months after release, individuals had a distinct seasonal pattern in δ13C values. Hairs from individuals that experienced food scarcity or long-distance movement were sampled as case studies. Nutritional stress in these cases lead to a rise in δ15N values and a decrease in δ13C values. Applications of δ13C and δ15N analyses of bison tail hairs could provide wildlife managers a valuable and minimally invasive tool to better understand bison seasonal metabolic status and determine the historical health and behavior of living and dead individuals.

2008 ◽  
Vol 5 (6) ◽  
pp. 1657-1667 ◽  
Author(s):  
C. Rolff ◽  
R. Elmgren ◽  
M. Voss

Abstract. Atmospheric deposition of nitrogen and phosphorus on the central Baltic Sea (Baltic Proper) was estimated monthly at two coastal stations and two isolated islands in 2001 and 2002. Yearly nitrogen deposition ranged between 387 and 727 mg N m−2 yr−1 (average 617) and was composed of ~10% organic N and approximately equal amounts of ammonium and nitrate. Winter nitrate peaks at the isolated islands possibly indicated ship emissions. Load weighted δ15N of deposited N was 3.7‰ and 0.35‰ at the coastal stations and the isolated islands respectively. Winter δ15N was ~3‰ lighter than in summer, reflecting winter dominance of nitrate. The light isotopic composition of deposited nitrogen may cause overestimates of nitrogen fixation in basin-wide isotopic budgeting, whereas relatively heavy deposition of ammonium during summer instead may cause underestimates of fixation in budgets of the upper mixed layer. δ15N in atmospherically deposited nitrate and ammonium was estimated by regression to −7.9 and 13.5‰ respectively. Phosphorus deposition showed no clear seasonal pattern and was considerably lower at the isolated islands. Organic P constituted 20–40% of annual P deposition. P deposition is unlikely to be a major source for cyanobacterial blooms but may potentially prolong an ongoing bloom.


2008 ◽  
Vol 5 (4) ◽  
pp. 3013-3044 ◽  
Author(s):  
C. Rolff ◽  
R. Elmgren ◽  
M. Voss

Abstract. Atmospheric deposition of nitrogen and phosphorus on the Baltic Proper was estimated monthly at two coastal stations and two isolated islands in 2001 and 2002. Yearly nitrogen deposition ranged between 387 and 727 mg N m−2 yr−1 (average ~617) and was composed of ~10% organic N and approximately equal amounts of ammonium and nitrate. Winter nitrate peaks at the isolated islands possibly indicated ship emissions. Load weighted δ15N of deposited N was 3.7‰ and 0.35‰ at the coastal stations and the isolated islands respectively. Winter δ15N was ~3‰ lighter than in summer, reflecting winter dominance of nitrate. The light isotopic composition of deposited nitrogen may cause overestimates of nitrogen fixation in basin-wide isotopic budgeting, whereas relatively heavy deposition of ammonium during summer instead may cause underestimates of fixation in budgets of the upper mixed layer. δ15N in atmospherically deposited nitrate and ammonium was estimated by regression to –7.9 and 13.5‰ respectively. Phosphorus deposition showed no clear seasonal pattern and was considerably lower at the isolated islands. Organic P constituted 20–40% of annual P deposition. P deposition is unlikely to be a major source for cyanobacterial blooms but may potentially prolong an ongoing bloom.


Author(s):  
Carolyn Swan

Around the year 970 CE, a merchant ship carrying an assortment of goods from East Africa, Persia, India, Sri Lanka, Southeast Asia, and China foundered and sank to the bottom of the Java Sea. Thousands of beads made from many different materials—ceramic, jet, coral, banded stone, lapis lazuli, rock crystal, sapphire, ruby, garnet, pearl, gold, and glass—attest to the long-distance movement and trade of these small and often precious objects throughout the Indian Ocean world. The beads made of glass are of particular interest, as closely-dated examples are very rare and there is some debate as to where glass beads were being made and traded during this period of time. This paper examines 18 glass beads from the Cirebon shipwreck that are now in the collection of Qatar Museums, using a comparative typological and chemical perspective within the context of the 10th-century glass production. Although it remains uncertain where some of the beads were made, the composition of the glass beads points to two major production origins for the glass itself: West Asia and South Asia.


2020 ◽  
Vol 54 (8) ◽  
pp. 819-824
Author(s):  
P. Yu. Voronin ◽  
V. A. Mukhin ◽  
T. A. Velivetskaya ◽  
A. V. Ignatiev ◽  
Vl. V. Kuznetsov

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 542-544
Author(s):  
R. Pokorný ◽  
M. Porubová

Under greenhouse conditions 12 maize hybrids derived from crosses of four resistant lines with several lines of different level of susceptibility were evaluated for resistance to Czech isolate of Sugarcane mosaic virus (SCMV). These hybrids were not fully resistant to isolate of SCMV, but the symptoms on their newly growing leaves usually developed 1 to 3 weeks later in comparison with particular susceptible line, the course of infection was significantly slower and rate of infection lower. As for mechanisms of resistance, the presence of SCMV was detected by ELISA in inoculated leaves both of resistant and susceptible lines, but virus was detected 7 days later in resistant line. Systemic infection developed only in susceptible lines. These results indicate restriction of viral long distance movement in the resistant line.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 823-831
Author(s):  
J A Sved ◽  
H Yu ◽  
B Dominiak ◽  
A S Gilchrist

Abstract Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1221
Author(s):  
Samar Sheat ◽  
Paolo Margaria ◽  
Stephan Winter

Cassava brown streak disease (CBSD) is a destructive disease of cassava in Eastern and Central Africa. Because there was no source of resistance in African varieties to provide complete protection against the viruses causing the disease, we searched in South American germplasm and identified cassava lines that did not become infected with the cassava brown streak viruses. These findings motivated further investigations into the mechanism of virus resistance. We used RNAscope® in situ hybridization to localize cassava brown streak virus in cassava germplasm lines that were highly resistant (DSC 167, immune) or that restricted virus infections to stems and roots only (DSC 260). We show that the resistance in those lines is not a restriction of long-distance movement but due to preventing virus unloading from the phloem into parenchyma cells for replication, thus restricting the virus to the phloem cells only. When DSC 167 and DSC 260 were compared for virus invasion, only a low CBSV signal was found in phloem tissue of DSC 167, indicating that there is no replication in this host, while the presence of intense hybridization signals in the phloem of DSC 260 provided evidence for virus replication in companion cells. In neither of the two lines studied was there evidence of virus replication outside the phloem tissues. Thus, we conclude that in resistant cassava lines, CBSV is confined to the phloem tissues only, in which virus replication can still take place or is arrested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.


Nature ◽  
1987 ◽  
Vol 325 (6101) ◽  
pp. 201-201 ◽  
Author(s):  
STANLEY H. AMBROSE ◽  
MICHAEL J. DENIRO

Sign in / Sign up

Export Citation Format

Share Document