New U–Pb age constraints on latest Cretaceous magmatism and associated mineralization in the Fawnie Range, Nechako Plateau, central British Columbia

2001 ◽  
Vol 38 (4) ◽  
pp. 619-637 ◽  
Author(s):  
R M Friedman ◽  
L J Diakow ◽  
R A Lane ◽  
J K Mortensen

New U–Pb ages and K–Ar dates, primarily for rocks proximal to mineral occurrences in the Fawnie Range of central British Columbia, document latest Cretaceous (ca. 74–66 Ma) continental-arc igneous activity and date associated base and precious metal mineralization. U–Pb ages of ca. 73–69 Ma for the Capoose pluton and hypabyssal to extrusive garnet rhyolites at the Capoose prospect demonstrate a latest Cretaceous age for mineralization and a likely plutonic source for mineralizing fluids. A U–Pb age of ca. 67 Ma for a late mineralized felsic dyke and two K–Ar dates (ca. 70 and 68 Ma) for hornfelsed Jurassic volcanic rocks at the Blackwater–Davidson prospect constrain a latest Cretaceous age for mineralization. A U–Pb age of ca. 74 Ma for a fine grained diorite sill that cuts a significant epithermal gold vein at the Tsacha prospect places a minimum age on mineralization at this probable Jura-Cretaceous deposit and documents latest Cretaceous magmatism. Latest Cretaceous K–Ar dates are reported for an andesite flow adjacent to the Eocene Holy Cross deposit (ca. 66 Ma), about 35 km north of the Fawnie Range, and a Kasalka Group rhyolite (ca. 68 Ma) exposed near the western margin of the Nechako Plateau. Latest Cretaceous magmatism and mineralization in the Fawnie Range represent the waning stages of Bulkley suite magmatism and porphyry-style mineralization, which was concentrated along the western margin of the Nechako Plateau at circa 88–70 Ma. The distribution of latest Cretaceous arc igneous rocks along the North American Cordilleran is reviewed and tectonic implications discussed.

1983 ◽  
Vol 20 (12) ◽  
pp. 1891-1913 ◽  
Author(s):  
D. A. Archibald ◽  
J. K. Glover ◽  
R. A. Price ◽  
E. Farrar ◽  
D. M. Carmichael

K–Ar dates and U–Pb zircon dates define three periods of igneous activity in the southern Kootenay Arc: (1) emplacement of late-synkinematic to post-kinematic granodioritic plutons in mid-Jurassic time (170–165 Ma) accompanying amphibolite-facies regional metamorphism; (2) emplacement of post-kinematic granitic plutons in mid-Cretaceous time (~100 Ma); and (3) emplacement of small bodies of syenite in Eocene time (~50 Ma) in the western part of the area. Micas from mid-Jurassic plutons that yield the oldest K–Ar dates (158–166 Ma) also yield plateau-shaped 40Ar/39Ar age spectra. Age spectra for biotites younger than these but older than 125 Ma reflect thermal overprinting.In southeastern British Columbia, the Kootenay Arc marks the transition from the North American rocks of the Cordilleran miogeocline to the tectonic collage of allochthonous terranes that have been accreted to it.Deformation, metamorphism, and plutonism recorded in rocks of the southern Kootenay Arc commenced in mid-Jurassic time as a composite allochthonous terrane was accreted to and overlapped the western margin of North America. The geochronology and metamorphic geothermobarometry show that in less than 10 Ma between 166 and 156 Ma: (1) rocks as young as the late Proterozoic Windermere Supergroup and the early Paleozoic Lardeau Group were carried rapidly to depths of 20–24 km while being deformed and intruded by granitic rocks of a hornblende–biotite suite that were also being emplaced at a much shallower level in the overriding allochthonous terrane; and (2) the miogeoclinal rocks of the Windermere Supergroup in the southern Kootenay Arc were then uplifted by more than 7 km at an estimated rate of 2 mm/year, and thrust over the allochthonous terrane prior to being intruded by post-kinematic granitic rocks, many of which belong to the two-mica suite of mid-Cretaceous age..


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


1997 ◽  
Vol 34 (6) ◽  
pp. 854-874 ◽  
Author(s):  
Filippo Ferri

In north-central British Columbia, a belt of upper Paleozoic volcanic and sedimentary rocks lies between Mesozoic arc rocks of Quesnellia and Ancestral North America. These rocks belong to two distinct terranes: the Nina Creek Group of the Slide Mountain terrane and the Lay Range Assemblage of the Quesnel terrane. The Nina Creek Group is composed of Mississippian to Late Permian argillite, chert, and mid-ocean-ridge tholeiitic basalt, formed in an ocean-floor setting. The sedimentary and volcanic rocks, the Mount Howell and Pillow Ridge successions, respectively, form discrete, generally coeval sequences interpreted as facies equivalents that have been interleaved by thrusting. The entire assemblage has been faulted against the Cassiar terrane of the North American miogeocline. West of the Nina Creek Group is the Lay Range Assemblage, correlated with the Harper Ranch subterrane of Quesnellia. It includes a lower division of Mississippian to Early Pennsylvanian sedimentary and volcanic rocks, some with continental affinity, and an upper division of Permian island-arc, basaltic tuffs and lavas containing detrital quartz and zircons of Proterozoic age. Tuffaceous horizons in the Nina Creek Group imply stratigraphic links to a volcanic-arc terrane, which is inferred to be the Lay Range Assemblage. Similarly, gritty horizons in the lower part of the Nina Creek Group suggest links to the paleocontinental margin to the east. It is assumed that the Lay Range Assemblage accumulated on a piece of continental crust that rifted away from ancestral North America in the Late Devonian to Early Mississippian by the westward migration of a west-facing arc. The back-arc extension produced the Slide Mountain marginal basin in which the Nina Creek Group was deposited. Arc volcanism in the Lay Range Assemblage and other members of the Harper Ranch subterrane was episodic rather than continuous, as was ocean-floor volcanism in the marginal basin. The basin probably grew to a width of hundreds rather than thousands of kilometres.


1975 ◽  
Vol 12 (10) ◽  
pp. 1760-1769 ◽  
Author(s):  
Andrew V. Okulitch ◽  
R. K. Wanless ◽  
W. D. Loveridge

An apparently tabular body of granitoid gneiss, 3 to 5 km wide and more than 70 km long, that lies along the western margin of the Shuswap Metamorphic Complex between Shuswap and Admas Lakes, shows intrusive relationships with Palaeozoic and older rocks and has yielded zircons whose minimum age is 372 Ma. This intrusion, together with other granitoid plutons in the area that appear to be related to it, provide evidence of widespread plutonism during Middle Devonian time near the western edge of the Paleozoic Cordillera geosyncline and necessitate significant revisions in the interpretation of the crustal history of this region.


2003 ◽  
Vol 40 (7) ◽  
pp. 907-924 ◽  
Author(s):  
Renée-Luce Simard ◽  
Jaroslav Dostal ◽  
Charlie F Roots

The late Paleozoic volcanic rocks of the northern Canadian Cordillera lying between Ancestral North America to the east and the accreted terranes of the Omineca belt to the west record early arc and rift magmatism along the paleo-Pacific margin of the North American craton. The Mississippian to Permian volcano-sedimentary Klinkit Group extends discontinuously over 250 km in northern British Columbia and southern Yukon. The two stratotype areas are as follows: (1) in the Englishman Range, southern Yukon, the English Creek Limestone is conformably overlain by the volcano-sedimentary Mount McCleary Formation (Lower Clastic Member, Alkali-Basalt Member and Volcaniclastic Member), and (2) in the Stikine Ranges, northern British Columbia, the Screw Creek Limestone is conformably overlain by the volcano-sedimentary Butsih Formation (Volcaniclastic Member and Upper Clastic Member). The calc-alkali nature of the basaltic volcaniclastic members of the Klinkit Group indicates a volcanic-arc setting ((La/Yb)N = 2.77–4.73), with little involvement of the crust in their genesis (εNd = +6.7 to +7.4). Alkali basalts in the Mount McCleary Formation ((La/Yb)N = 12.5–17.8) suggest periodic intra-arc rifting events. Broadly coeval and compositionally similar volcano-sedimentary assemblages occur in the basement of the Mesozoic Quesnel arc, north-central British Columbia, and in the pericratonic Yukon–Tanana composite terrane, central Yukon, suggesting that they all represent pieces of a single long-lived, late Paleozoic arc system that was dismembered prior to its accretion onto Ancestral North America. Therefore, Yukon–Tanana terrane is possibly the equivalent to the basement of Quesnel terrane, and the northern Quesnel terrane has a pericratonic affinity.


2011 ◽  
Vol 48 (6) ◽  
pp. 1000-1020 ◽  
Author(s):  
Nathan Hayward ◽  
Andrew J. Calvert

The structure and stratigraphy of the southeast Nechako Basin, which are poorly understood primarily because of substantial volcanic cover, are investigated in an analysis of seismic reflection, well, and potential field data. Formation and development of the SE Nechako Basin resulted in sub-basins containing Cretaceous and Eocene rocks. Interpretation reveals that dextral transtension in the Early to Middle Eocene created NNW-trending, en echelon, strike-slip faults linked by pull-apart basins, which locally contain a thickness of Eocene volcaniclastic rocks of >3 km. This structural pattern is consistent with regional observations that suggest the transfer of slip from the Yalakom fault to the north via a series of en echelon strike-slip faults. In the Middle to Late Eocene, faults associated with a change in the direction of stress, echoed by the north-trending right-lateral Fraser fault, reactivated and cut earlier structures. A simple model agrees with local observations, that northeast-directed compression was subparallel to the relic Cretaceous grain. Cretaceous rocks are discontinuous throughout the basin and may be remnants of a broader basin, or a number of contemporaneous basins, formed in a regional transpressional tectonic setting that caused northeast-directed thrusting along the eastern side of the Coast Plutonic Complex. Results suggest that thrusting affected most of the SE Nechako Basin, as observed across the Intermontane Belt to the northwest and southeast. The pattern of deposition of Neogene volcanic rocks of the Chilcotin Group was in part controlled by the Eocene structural grain, but we find no evidence of Neogene deformation.


1995 ◽  
Vol 32 (10) ◽  
pp. 1759-1776 ◽  
Author(s):  
J. Brian Mahoney ◽  
Richard M. Friedman ◽  
Sean D. McKinley

The Harrison Lake Formation is an Early to Middle Jurassic volcanic-arc assemblage unconformably overlying Triassic oceanic basement in the eastern Coast Belt of southwestern British Columbia. The formation is subdivided into four members including, in ascending order, the Celia Cove Member (conglomerate), the Francis Lake Member (fine-grained strata), the Weaver Lake Member (flows and breccias), and the Echo Island Member (pyroclastic and epiclastic strata). New biostratigraphic constraints pinpoint the initiation of volcanism to late early Toarcian. U–Pb geochronology demonstrates the arc was active until at least late Bajocian–early Bathonian time (166.0 ± 0.4 Ma), and that the timing of arc volcanism strongly overlaps emplacement of both hypabyssal intrusions (Hemlock Valley stock) and deep-seated plutons (Mount Jasper pluton) within and adjacent to the arc. Geochemical data indicate the arc is of medium- to high-K calc-alkaline affinity, and is strongly light rare earth element enriched (LaN/YbN = 1.5 – 2.5). Nd and Sr isotopic data from primary volcanic rocks demonstrate the juvenile nature of the magmatic system, but isotopic data from associated fine-grained sedimentary rocks suggest temporally controlled variations in isotopic composition interpreted to represent two-component mixing between juvenile volcanic detritus and a more evolved detrital component. The succession of facies in the Harrison Lake Formation records initial basin subsidence in the Early Jurassic, initiation of explosive volcanism in the late early Toarcian, a change to effusive volcanism in the early Aalenian, and late-stage explosive volcanism in the late Bajocian. The Harrison Lake Formation contains mesoscopic folds and overturned bedding that are absent in the overlying Callovian Mysterious Creek Formation, strongly suggesting the existence of a regional Bathonian deformational event in the southern Coast Belt.


1981 ◽  
Vol 18 (12) ◽  
pp. 1767-1775 ◽  
Author(s):  
L. C. Struik

Three tectonostratigraphic successions are established from remapping of the area near Barkerville and Cariboo River. The first, of Late Proterozoic to Cambrian sediments, was deposited on the shallow to moderately deep platformal shelf west of and derived from the exposed North American craton. The second is an unconformably overlying Ordovician to Permian sequence of sedimentary and volcanic rocks representing a basinal environment with periodic highs. These packages of sediments were deposited on the North American craton and its western transitional extensions. The third succession, composed of oceanic chert and basalt of the Permo-Pennsylvanian Antler Formation, was thrust eastward over the other two during the early Mesozoic. The three successions were folded, faulted, and metamorphosed during the mid-Mesozoic Columbian Orogeny. The Devono-Mississippian Cariboo Orogeny, which was thought to have affected all of the first sequence and part of the second, could not be documented in its type locality. The geology of the Barkerville – Cariboo River area has many similarities with that of Selwyn Basin and Cassiar platform of northern British Columbia and Yukon.


1990 ◽  
Vol 27 (11) ◽  
pp. 1456-1461 ◽  
Author(s):  
R. M. Friedman ◽  
J. W. H. Monger ◽  
H. W. Tipper

A new U–Pb date of [Formula: see text] for foliated felsic metavolcanic rocks of the Bowen Island Group, from Mount Elphinstone in the southwesternmost Coast Mountains of British Columbia, indicates that there the age of this hitherto undated unit is early Middle Jurassic. These rocks grade along strike to the north-northwest into a more sedimentary facies, which north of Jervis Inlet contains a probable Sinemurian (Lower Jurassic) ammonite. The Bowen Island Group thus appears to include Lower and Middle Jurassic rocks and to be coeval in part with volcanic rocks of the Bonanza Formation on Vancouver Island to the west and the Harrison Lake Formation within the central Coast Mountains 75 km to the east.


Sign in / Sign up

Export Citation Format

Share Document