Ductile strain partitioning in micritic limestones, Calabria, Italy: the roles and mechanisms of intracrystalline and intercrystalline deformation

2007 ◽  
Vol 44 (11) ◽  
pp. 1587-1602 ◽  
Author(s):  
S Vitale ◽  
J C White ◽  
A Iannace ◽  
S Mazzoli

The Apennine Pollino–Ciagola limestone unit in northern Calabria is characterized by subgreenschist, heterogeneous ductile strain localized along narrow deformation zones at several stratigraphic levels. Paleogene conglomerates and Jurassic calcareous breccias and ooidal packstones have been analyzed with the aim of characterizing the deformation of limestone as a function of the strain recorded by sedimentary markers. Reference sections parallel to principal finite strain planes were prepared at each locality for the study of specific parameters. Image analysis of polished sections by scanning electron microscopy (SEM) was used to obtain the finite strain of calcite grains by Rf/ϕ, harmonic mean and normalized Fry methods. For the range of grain sizes analyzed (1–10 µm), the ellipticity of calcite grains varies as a function of grain size according to a power-law relationship, from which the size of isometric grains is empirically predicted. The finite strain (ellipticity) determined from single calcite grains shows consistently lower values than the corresponding rock strain. For a fixed grain size, grain ellipticity initially increases with rock strain; however for larger strain, scattered ellipticity values are recorded, probably because of dynamic recrystallization. Comparison of bulk strain with grain strain suggests that intercrystalline deformation involving grain boundary sliding contributes 50%–80% of the total strain, for grain sizes in the range of 2–10 µm, increasing to 90% or more for smaller grain sizes. Microstructures (optical, SEM, transmission electron microscopy) are consistent with dominant grain boundary sliding accommodated by dislocation processes. The weakly deformed samples (Rs <4) exhibit straight and subsidiary curved mechanical twins in large grains (d >10 µm), with well-developed glide dislocation substructures in both coarse and micrite grains. In the moderately to highly deformed samples (Rs >4), large grains show curved, thick, and patchy twins, with the development of undulose extinction and subgrains. Subwalls are formed from dislocation networks and relate to subgrain rotation recrystallization in the coarsest grains. Both large and small grains exhibit complex dislocation substructures comprising dislocation networks indicative of concurrent intercrystalline and intracrystalline deformation, whereby grain boundary sliding is accommodated by dislocation processes. Integration of tectonic constraints, field observations, finite strain data, microstructures, and experimental data is consistent with natural deformation at 250 °C, 15–50 MPa, and bulk shear strain rates on the order of 10–13 s–1 to 10–12 s–1.

Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.


2007 ◽  
Vol 345-346 ◽  
pp. 565-568
Author(s):  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Koji Morita ◽  
Hidehiro Yoshida

For steady-state deformation caused by grain-boundary diffusion and viscous grain-boundary sliding, the creep rate of regular polyhedral grains is analyzed by the energy-balance method. For the microstructure, the grain-grain interaction increases the degree of symmetry of diffusional field, resulting in a decrease of the effective diffusion distance. Meanwhile, the viscous grain-boundary sliding is found to decrease the creep rate. The present analysis reveals that the grain-size exponent is dependent on the grain size and the grain-boundary viscosity: the exponent becomes unity for small grain sizes and/or high viscosity, while it is three for large grain sizes and/or low viscosity.


2017 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. The dispersal of monomineralic quartz domains in a quartzofeldspathic ultramylonite is interpreted to be the result of the emergence of syn-kinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener-Stroh cracking and viscous grain boundary sliding. In initially thick and coherent quartz ribbons deforming by grain size-insensitive creep, cavities were generated by the Zener-Stroh mechanism on grain-boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain-boundaries and promoted viscous grain boundary sliding. With the increased contribution of viscous grain boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain size-insensitive, to a grain size-sensitive rheology.


1990 ◽  
Vol 196 ◽  
Author(s):  
R. W. Siegel

ABSTRACTThe ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.


2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2001 ◽  
Author(s):  
J. Narayan ◽  
H. Wang ◽  
A. Kvit

Abstract We have synthesized nanocrystalline thin films of Cu, Zn, TiN, and WC having uniform grain size in the range of 5 to 100 nm. This was accomplished by introducing a couple of manolayers of materials with high surface and have a weak interaction with the substrate. The hardness measurements of these well-characterized specimens with controlled microstructures show that hardness initially increases with decreasing grain size following the well-known Hall-Petch relationship (H∝d−½). However, there is a critical grain size below which the hardness decreases with decreasing grain size. The experimental evidence for this softening of nanocrystalline materials at very small grain sizes (referred as reverse Hall-Petch effect) is presented for the first time. Most of the plastic deformation in our model is envisioned to be due to a large number of small “sliding events” associated with grain boundary shear or grain boundary sliding. This grain-size dependence of hardness can be used to create functionally gradient materials for improved adhesion and wear among other improved properties.


2019 ◽  
Vol 117 (1) ◽  
pp. 196-204 ◽  
Author(s):  
John P. Hirth ◽  
Greg Hirth ◽  
Jian Wang

A different type of defect, the coherency disclination, is added to disclination types. Disconnections that include disclination content are considered. A criterion is suggested to distinguish disconnections with dislocation content from those with disclination content. Electron microscopy reveals unit disconnections in a low albite grain boundary, defects important in grain boundary sliding. Disconnections of varying step heights are displayed and shown to define both deformed and recovered structures.


2020 ◽  
Author(s):  
John Wheeler ◽  
Lynn Evans ◽  
Robyn Gardner ◽  
Sandra Piazolo

&lt;p&gt;Diffusion creep and the wet low temperature version, pressure solution, are major deformation mechanisms in the Earth. Pressure solution operates in many metamorphosing systems in the crust and may contribute to slow creep on fault surfaces. Diffusion creep prevails in areas of the upper mantle deforming slowly, and possibly in most of the lower mantle. Both mechanisms contribute to localisation since small grain sizes can deform faster.&lt;/p&gt;&lt;p&gt;However, there has been limited attention paid to the evolution of microstructure during diffusion creep. In some experiments grains coarsen; in some but not all experiments grains remain rather equant. We have developed a grain-scale numerical model for diffusion creep, which indicates that those processes are very important in influencing evolving strength. Our models illustrate three behaviours.&lt;/p&gt;&lt;ol&gt;&lt;li&gt;Strain localises along slip surfaces formed by aligned grain boundaries on all scales. This affects overall strength.&lt;/li&gt; &lt;li&gt;Diffusion creep is predicted to produce elongate grains and then the overall aggregate has intense mechanical anisotropy. Thus strength during diffusion creep, and localisation on weak zones, is influenced not just by grain size but by other aspects of microstructure.&lt;/li&gt; &lt;li&gt;Grain coarsening increases grain size and strength. Our most recent work shows how it interacts with ongoing deformation. In particular grain growth can lead to particular grain shapes which are directly related to strain rate, and influence strength. Consequently, understanding localisation during diffusion creep must encompass the effects of diffusion itself, grain boundary sliding and grain coarsening.&lt;/li&gt; &lt;/ol&gt;


2010 ◽  
Vol 654-656 ◽  
pp. 607-610 ◽  
Author(s):  
Koji Hagihara ◽  
Akihito Kinoshita ◽  
Yuya Sugino ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura ◽  
...  

Deformation mechanisms of Mg89Zn4Y7 (at.%) extruded alloy, which is mostly composed of LPSO-phase, was investigated focusing on their temperature dependence. The yield stress of as-extruded alloy showed extremely high value of ~480 MPa at RT, but it largely decreased to ~130 MPa at 300 °C. The decreasing rate of the yield stress could be significantly reduced, however, by the annealing of specimen at 400 °C, by suppressing the microyielding which is considered to occur related by the grain boundary sliding in restricted regions. The yield stress of the annealed specimens with random textures could be estimated by the Hall-Petch relationship by regarding the length of long-axis of plate-like grains as a grain size between RT and 300 °C. The yield stress of the annealed specimens maintained high values even at 200°C, but it also showed large decreases at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document