Geothermal gradients in the Hinton area of west-central Alberta

1982 ◽  
Vol 19 (4) ◽  
pp. 755-766 ◽  
Author(s):  
H. L. Lam ◽  
F. W. Jones ◽  
C. Lambert

Temperature data from petroleum exploration well logs of 3360 wells in a region of west-central Alberta are used to estimate thermal gradients. A relatively high geothermal gradient (~36 °C/km) of oblong shape located near Hinton is observed. The axis of the anomaly strikes approximately southwest–northeast and passes through the Miette Hot Springs area. It appears that water is heated at depth in the Rocky Mountain disturbed region and travels eastward and toward the surface along fault planes.

2003 ◽  
Vol 81 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Jerry O Wolff ◽  
Toni Van Horn

Animal behavior is often optimized as a trade-off between survival and reproduction. During the breeding season, mammals tend to maximize their reproductive effort within the constraints of predation pressure. When predation pressure is reduced, greater effort can be allocated to reproductive behavior and less to vigilance and predator avoidance. The objective of this study was to test the hypothesis that elk, Cervus elaphus, in Yellowstone National Park (YNP), with predators, would spend more time in vigilance and risk-avoidance behavior than would elk in Rocky Mountain National Park (RMNP), a predator-free environment. We further predicted that elk at Mammoth Hot Springs (MAM) in YNP would behave similarly to those at RMNP because predators were absent in that area of the park. Cow elk in YNP spent more time in vigilance and less in foraging during activity periods than did cows in RMNP or MAM. Also, elk in YNP retreated to forest cover during the midday inactive period, whereas elk in RMNP and MAM remained in open habitat. Vigilance was not correlated with group size at either site. Cows with calves spent more time in vigilance and less in foraging than did cows without calves in RMNP and YNP. Bull elk spent most of their time in courtship at all sites, but foraged more at RMNP than in YNP or MAM. Mean harem sizes were similar among the three sites: 17.0 in RMNP, 15.7 in YNP, and 19.0 in MAM. The proportion of cows with calves was significantly lower in the area with predators, YNP (0.10), than in the predator-free areas (0.24 in RMNP and 0.37 in MAM), probably because of greater calf mortality in YNP. Elk in YNP behaved in accordance with a predation risk, whereas those in RMNP and MAM showed less vigilance behavior.


1999 ◽  
Vol 65 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Akira Hiraishi ◽  
Taichi Umezawa ◽  
Hiroyuki Yamamoto ◽  
Kenji Kato ◽  
Yonosuke Maki

ABSTRACT The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile.Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq ), and bioenergetic divergence index (BDq ). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses ofMDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.


2020 ◽  
Author(s):  
Tino Peplau ◽  
Edward Gregorich ◽  
Christopher Poeplau

<p>Global warming will increase soil microbial activity and thus catalyse the mineralisation of soil organic carbon (SOC). Predicting the dynamics of soil organic carbon in response to warming is crucial but associated with large uncertainties, owing to experimental limitations. Most studies use in-vitro incubation experiments or relatively short-term in-situ soil warming experiments. Long-term observations on the consequences of soil warming on whole-profile SOC are still rare. Here, we used a long-term geothermal gradient in North-West Canada to study effects of warming on quantity and quality of SOC in an aspen forest ecosystem.</p><p>The Takhini hot springs are located within the region of discontinuous permafrost in the southern Yukon Territory, Canada. The springs warm the surrounding soil constantly and lead to a horizontal temperature gradient of approximately 10°C within a radius of 100 meters. As these natural springs heat the ground for centuries and the forest ecosystem surrounding the springs is relatively homogenous, the site provides ideal conditions for observing long-term effects of soil warming on ecosystem properties. Soils were sampled at four different warming intensities to a depth of 80 cm and analysed for their SOC content and further soil properties in different depths. </p><p>For the bulk soil, we found a significant negative relationship between soil temperature and SOC stocks. This confirms that climate change will most likely induce SOC loss and thus a positive climate- carbon cycle feedback loop. The response of five different SOC fractions to warming will also be presented.</p>


2021 ◽  
Author(s):  
Francois Hategekimana ◽  
Theophile Mugerwa ◽  
Cedrick Nsengiyumva ◽  
Digne Rwabuhungu ◽  
Juliet Confiance Kabatesi

Abstract Hot spring is a hot water that is naturally occurring on the surface from the underground and typically heated by subterranean volcanic activity and local underground geothermal gradient. There are four main hot springs in Rwanda such as: Kalisimbi, Bugarama, Kinigi and Nyamyumba former name Gisenyi hot springs. This research focused on the geochemical analysis of Nyamyumba hot springs located near the fresh water of Lake Kivu. Nyamyumba hot springs are located in the western branch of the East African Rift System and they are located near Virunga volcanic complex, explaining the rising and heating of water. The concentrations of Sulfate, Iron, Ammonia, Alkalinity, Silica, Phosphate, Salinity, Alkalinity, and Conductivity using standard procedures were measured. The results showed that hot spring water has higher concentrations of chemicals compared to Lake Kivu water and the geochemistry of these hot springs maybe associated with rock dissolution by hot water. The measured parameters were compared with World Health Organization (WHO) standards for recreational waters and it has been identified that Nyamyumba hot spring are safe to use in therapeutic activities (Swimming).


Author(s):  
Bolormaa Ch ◽  
Oyuntsetseg D ◽  
Bolormaa O

In this study, we collected hot spring water sample from Otgontenger, Tsetsuukh, Zart, Ulaan Khaalga and Khojuul in Zavkhan province. The purpose of this study is to determine the temperature of geothermal water and its depth which based on the hydrochemical component. Hot spring water analyses showed that temperature ranges between 33.4 to 45.5°C, pH ranges 8.40 to 9.56, and the total dissolved solid amount was 170 to 473 mg/L. From the result of hydrochemical analyses, hot spring samples were included in SO4-Na and HCO3-Na type. In comparison to other hot spring samples, Tsetsuukh hot spring has shown negative oxidation reduction potential, -0.8 mV and dissolved hydrogen, 0.22 mg/L. Therefore, it has a higher ability for medical treatment than other hot spring water due to its reduction state. The reservoir temperature of these hot springs is calculated by several geothermometer methods, and temperatures ranged between 102оC to 149оC. According to this result, it assumed that geothermal water with low temperature which has the ability to use for room heating and producing energy by the binary system. Thus, we determined that reservoir depth is 1.3 to 3.7 km using annual average surface and reservoir temperature, and regional geothermal gradient. Завхан аймгийн халуун рашаануудын химийн найрлага, геотермометрийн судалгаа Хураангуй: Бид энэхүү судалгааны ажлаар Завхан аймгийн нутагт орших Отгонтэнгэр, Зарт, Цэцүүх, Улаан хаалга, Хожуулын халуун рашаануудын гидрохимийн найрлагыг нарийвчлан тогтоосоны үндсэн дээр тухайн рашаануудын газрын гүний халуун усны температур болон гүнийг тогтоох зорилго тавин ажиллаа. Завхан аймгийн рашаанууд нь халуун 33.4-45.5°C температуртай, шүлтлэг орчинтой (pH 8.4-9.56), 170-473 мг/л хүртэл эрдэсжилттэй, HCO3-Na болон SO4-Na-ийн төрлийн халуун рашааны ангилалд хамаарагдаж байна. Эдгээр рашаануудаас Цэцүүхийн халуун рашааны исэлдэн ангижрах потенциал нь -0.8 мВ, ууссан устөрөгчийн агуулга 0.22 мг/л илэрсэн нь судалгаанд хамрагдсан бусад рашаануудтай харьцуулахад ангижрах төлөвт оршиж байгаа бөгөөд илүү эмчилгээний идэвхтэй болохыг харуулж байна. Судалгаанд хамрагдсан халуун рашаануудын гүний температурыг химийн найрлагаас нь хамааруулан хэд хэдэн геотермометрийг ашиглан тооцоход дунджаар 102-149oС байсан ба энэ нь бага температуртай усны ангилалд хамаарагдаж байгаа учир тухайн халуун усны нөөцийг өрөө тасалгаа халаах болон бинари системийг ашиглан цахилгаан гаргаж авах боломжтой байна. Мөн Завхан аймгийн халуун рашаануудын газрын гүний халуун усны нөөц нь газрын гадаргаас доош 1.3-3.7 км-ийн гүнд байрладаг болохыг орд дээрх температур, газрын гүний халуун усны температур болон бүс нутгийн геотермал градиентад үндэслэн тооцоолон тодорхойллоо. Түлхүүр үг: Гидрохими, халуун рашаан, геотермометр, гүний температур.


1994 ◽  
Vol 41 ◽  
pp. 34-49
Author(s):  
Alan Judd ◽  
David Long ◽  
Michael Sankey

Digital seismic reflection (boomer) profiles of an active pockmark, in UK block 15/25, North Sea, reveal that the feature was formed prior to the deposition of the most recent sediments, probably by vigorous (or even catastrophic) gas escape. This release may have been triggered by the melting of ground ice when North Atlantic waters first entered the North Sea after the last glaciation, about 13,000 years ago. Possible sources of the gas are investigated by examining the composite log from a nearby petroleum exploration well; it is concluded that, although the gas may .originate from the Kimmeridge Clay, it probably comes from lignites of Tertiary age. Its migration towards the seabed is interrupted by local accumulations at several horizons, the shallowest of which (<80 m below seabed) is trapped beneath clayey sediments of the Coal Pit Formation. The topography of the base of this layer apparently controls the location of gas migration pathways to the seabed. As these lead to pockmarks which formed long ago, and as these pockmarks are still active today, it is probable that the migration pathways have remained throughout the intervening period. Gas accumulating beneath the Coal Pit Formation may migrate laterally to reach the pathways.


1977 ◽  
Vol 85 ◽  
pp. 7-10
Author(s):  
K Ellitsgaard-Rasmussen

In 1976 the first petroleum exploration well was drilled on the shelf off West Greenland. This marked an important stage in the development of petroleum exploration in Greenland folIowing the granting of concessions in April 1975 by the Ministry for Greenland. GGU's Oil and Gas Section was closely involved in the assessment of the drilling programme and in following the operation. Sample material and data were submitted during and after the drilling to the Ministry for Greenland and were studied in the Survey as part of the follow-up procedure. Several members ofthe GGU staff visited the drill ship Pelican during the summer.


1973 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Marita D. Keenan ◽  
Patricia B. Lapworth

The increased pace of scientific research and technological development since the Second World War has resulted in an "explosion" in the amount of information being produced in scientific and technical fields. It has been calculated that the published literature of these fields doubles every ten years. Most industries have been affected by this and the petroleum exploration industry is no exception. Exploration companies are prolific producers of information, particularly that resulting from their field operations.The information needs of the management and technical staff of exploration companies cover a very wide field of diverse material, which includes legal, financial, economic, industrial and statistical material, as well as geological and geophysical data and its interpretation. Relevant external material includes information on exploration methods and equipment, laws and regulations governing exploration in Australia, and the status and activities of competitors in the industry. All this comes from many and varied sources, and may be in conventional forms (books, journals, maps, etc) or in forms peculiar to the exploration industry itself (e.g. seismic sections and well logs). Internal information is even more complex in content and form, comprising field data of all kinds, reports, maps and diagrams, seismic sections and records, well logs, aerial photographs, and many other items.The difficulties presented by such a mass of varied and complex material are best overcome by the establishment of a "special library" in the charge of a professional librarian. A "special library" is one serving a specialist clientele and covering a particular field of knowledge. Professional librarians - or information officers - have been trained to gather, index, store, retrieve and disseminate information of all kinds; these tasks comprise the routine work of a special library. They are performed by adapting the standardised guidelines of librarianship to suit the specialised nature of the industry being served. Librarians are also trained in such tasks as literature research and compilation of information dossiers.The establishment of a special library under a qualified librarian provides an exploration company with:a centre for the integration of all kinds of information material; andan active information service.It thus enables a company to make the maximum use of all available information which may be relevant to its purposes.


Sign in / Sign up

Export Citation Format

Share Document