A new look at the stratigraphy of the Yellowknife Supergroup at Yellowknife, N.W.T. — implications for the age of gold-bearing shear zones and Archean basin evolution

1986 ◽  
Vol 23 (4) ◽  
pp. 454-475 ◽  
Author(s):  
H. Helmstaedt ◽  
W. A. Padgham

Based on recent detailed mapping, a revised stratigraphic column is proposed for the rocks of the Archean Yellowknife Supergroup in the Yellowknife greenstone belt. The mafic volcanic rocks of the Kam Formation, previously thought to represent the oldest supracrustal rocks of the belt, overlap remnants of an earlier volcanic–sedimentary sequence, here referred to as the Octopus Formation. As its enormous thickness makes it too unwieldy to be described as a single formation, the Kam Formation is raised to group status and subdivided into four formations. It is proposed that the Kam Group should replace the Beaulieu Group in the Yellowknife area. The Chan Formation, at the base of the Kam Group, consists of multiple gabbroic intrusions that were emplaced into a carapace of pillowed flows. The intrusions locally resemble sheeted mafic dyke complexes in Phanerozoic ophiolites, thought to represent evidence for sea-floor spreading. The Crestaurum Formation, which overlies the Chan Formation, is characterized by massive and pillowed flows interlayered with a number of laterally continuous cherts and felsic tuffs. The Townsite Formation consists of rhyodacite breccias interbedded with felsic tuffs and pillowed dacites. The Yellowknife Bay Formation, at the top of the Kam Group and comprising massive and pillowed flows with pillow breccias and numerous interflow sediments, contains all the important gold deposits mined at Yellowknife. The Banting Formation, directly overlying the Kam Group and consisting of mafic to felsic volcanics, is also given group status and subdivided into two formations. Conglomerates and sandstones of the Jackson Lake Formation, formerly thought to separate the Kam and Banting groups, are considered to represent the youngest rocks of the Yellowknife Supergroup near Yellowknife. Gold-bearing shear zones clearly postdate deposition of the Banting Group, making the rocks of this group a potential target for gold exploration. The presence of remnants of a possible spreading center at the base of the Kam Group suggests that plate-tectonic processes were active during the formation of Archean supracrustal basins in the Slave Province.

2008 ◽  
Vol 72 (4) ◽  
pp. 953-970 ◽  
Author(s):  
T. Oberthür ◽  
T. W. Weiser

AbstractGold mineralization at the Viceroy Mine is hosted in extensional veins in steep shear zones that transect metabasalts of the Archaean Arcturus Formation. The gold mineralization is generally made up of banded or massive quartz carrying abundant coarse arsenopyrite. However, most striking is a distinct suite of Au-Bi-Te-S minerals, namely joseite-A (Bi4TeS2), joseite-B (Bi4Te2S), hedleyite (Bi7Te3), ikunolite (Bi4S3), ‘protojoseite’ (Bi3TeS), an unnamed mineral (Bi6Te2S), bismuthinite (Bi2S3), native Bi, native gold, maldonite (Au2Bi), and jonassonite (AuBi5S4). The majority of the Bi-Te-S phases is characterized by Bi/(Se+Te) ratios of >1. Accordingly, this assemblage formed at reduced conditions at relatively low fS2 and fTe2. Fluid-inclusion thermometry indicates depositional temperatures of the main stage of mineralization of up to 342°C, in the normal range of mesothermal, orogenic gold deposits worldwide. However, melting temperatures of Au-Bi-Te phases down to at least 235°C (assemblage (Au2Bi + Bi + Bi7Te3)) imply that the Au-Bi-Te phases have been present as liquids or melt droplets. Furthermore, the close association of native gold, native bismuth and other Bi-Te-S phases suggests that gold was scavenged from the hydrothermal fluids by Bi-Te-S liquids or melts. It is concluded that a liquid/melt-collecting mechanism was probably active at Viceroy Mine, where the distinct Au-Bi-Te-S assemblage either formed late as part of the main, arsenopyrite-dominated mineralization, or it represents a different mineralization event, related to rejuvenation of the shear system. In either case, some of the gold may have been extracted from pre-existing, gold-bearing arsenopyrite by Bi-Te-S melts, thus leading to an upgrade of the gold ores at Viceroy. The Au-Bi-Te-S assemblage represents an epithermal-style mineralization overprinted on an otherwise mesothermal (orogenic) gold mineralization.


2006 ◽  
Vol 43 (12) ◽  
pp. 1835-1857 ◽  
Author(s):  
A M Goodwin ◽  
M B Lambert ◽  
O Ujike

Late Neoarchean volcanic belts in the southern Slave Province include (1) in the east, the Cameron River – Beaulieu River belts, which are characterized by stratigraphically thin, flow-rich, classic calc-alkaline, arc-type sequences with accompanying syngenetic volcanogenic massive sulphide deposits; and (2) in the west, the Yellowknife belt, which is characterized by stratigraphically thick, structurally complex, pyroclastic-rich, adakitic, back-arc basin-type sequences, with accompanying epigenetic lode-gold deposits. The volcanic belt association bears persuasive chemical evidence of subduction-initiated magma generation. However, the greenstone belts, together with coeval matching patterned belts in Superior Province of the southern Canadian Shield, bear equally persuasive evidence of prevailing autochthonous–parautochthonous relations with respect to component stratigraphic parts and to older gneissic basement. The eastern and western volcanic belts in question are petrogenetically ascribed to a "westerly inclined" (present geography) subduction zone(s) that produced shallower (east) to deeper (west), slab-initiated, mantle wedge-generated, parent magmas. This early stage microplate tectonic process involved modest mantle subduction depths, small tectonic plates, and small sialic cratons. In the larger context of Earth's progressively cooling, hence subduction-deepening mantle, this late Neoarchean greenstone belt development (2.73–2.66 Ga) merged with the massive end-Archean tonalite–trondhjemite–granodiorite–granite (TTGG) "bloom" (2.65–2.55 Ga), resulting in greatly enhanced craton stability. Successive subduction-deepening, plate-craton-enlarging stages, with appropriate metallotectonic response across succeeding Proterozoic time and beyond, led to modern-mode plate tectonics.


1993 ◽  
Vol 30 (8) ◽  
pp. 1566-1581 ◽  
Author(s):  
R. Craig Ford ◽  
Norman A. Duke

Gold-bearing iron formations are widely distributed within extensive metasedimentary terranes of the Archean Slave Province, situated in the northwestern Canadian Precambrian Shield. Mineralized iron formations occur within thick turbidite sequences overprinted by a protracted history of deformation, metamorphism, and plutonism. Economically significant gold prospects are specifically sited at structural culminations characterized by polyphase folding. Based on garnet–biotite geothermometry on the stable prograde metamorphic assemblage of enveloping metapelites, peak metamorphic conditions are approximated to be 570 °C and 4 kbar (1 kbar = 100 MPa). Diagnostic prograde mineralogy reveals that two facies of silicate iron formation are represented at the five gold occurrences investigated: (1) amphibolitic iron formation (AIF), characterized by quartz + grunerite + hornblende + pyrrhotite ± garnet ± graphite + ilmenite, and (2) pelitic iron formation (PIF), consisting of quartz + biotite + garnet + ilmenite ± grunerite ± hornblende. Textures reveal that grunerite crystallization preceded hornblende and garnet. Within AIF, banded pyrrhotite is in textural equilibrium with prograde metamorphic minerals. Retrograde hornblende, garnet, zoisite, apatite, carbonate, ferroactinolite, and gold-bearing sulphide minerals replace the prograde mineral assemblages on the margins of quartz veins that intensify at AIF fold hinges.It is hypothesized that the iron-formation-hosted gold deposits of the Slave Province are a result of multistage processes. Gold concentrated at high background levels within pyrrhotite-bearing AIF was remobilized during fluid migration into brittle AIF fold hinges in subsequent metamorphic and deformational events. Metamorphic fluid, ponded in fractured AIF hinge domains, caused retrogressive replacement, quartz veining, and gold-bearing sulphide precipitation during waning temperature. Although the mineralized hinge zones commonly display evidence of late chloritization, this alteration did not further affect gold distribution. The gold precipitated with destabilization of thio complexes due to sulphidation prior to low-temperature hydrothermal activity.


1999 ◽  
Vol 36 (7) ◽  
pp. 1083-1109 ◽  
Author(s):  
Wouter Bleeker ◽  
John WF Ketchum ◽  
Valerie A Jackson ◽  
Michael E Villeneuve

New field and geochronological data are used to define the distribution of Mesoarchean basement rocks in the south-central Slave Province. This distribution reflects a single contiguous basement terrane that we propose to call the Central Slave Basement Complex. It shows a structural topology that is internally consistent and compatible with known regional folding and faulting events. A sample of a proposed basement gneiss below the Courageous Lake greenstone belt, central Slave Province, has been dated by U-Pb methods and yields an age of 3325 ± 8 Ma, consistent with the new basement distribution. This sample also contains 2723 ± 3 Ma metamorphic zircon and ca. 2680 Ma titanite. The Central Slave Basement Complex is overlain by a thin, discontinuous, but distinctive cover sequence that includes minor volcanic rocks, clastic sedimentary rocks, and banded iron formation. All previously known and some new occurrences of this distinctive cover sequence occur in the immediate stratigraphic hanging wall of the Central Slave Basement Complex, locally overlying a preserved in situ unconformity. We propose to call this post-2.93 Ga cover sequence the Central Slave Cover Group. It is perhaps best typified by detrital chromite-bearing, fuchsitic quartzites. Formal formation names are proposed for the spatially separate occurrences of the Central Slave Cover Group. Detrital zircon ages are presented for one of the formations of the Central Slave Cover Group, the Patterson Lake Formation, which occurs on the western flank of a local basement culmination known as the Sleepy Dragon Complex. The detrital zircon data provide evidence for two discrete basement sources dated at ca. 2943 Ma and ca. 3147-3160 Ma. These detrital ages reinforce the depositional link between the Central Slave Cover Group and underlying crystalline rocks of the Central Slave Basement Complex.


1992 ◽  
Vol 29 (10) ◽  
pp. 2072-2086 ◽  
Author(s):  
W. A. Padgham ◽  
W. K. Fyson

The Slave Province is a relatively small Late Archean craton that exhibits distinctive rock associations and structures. By comparison with the much larger Superior Province, differences are evident in (i) the abundance of sedimentary versus volcanic rocks and of felsic versus mafic volcanic rocks; (ii) the greater evidence for sialic basement; (iii) the higher proportion of more evolved potassium-rich granite; (iv) the type, setting, and timing of gold and base-metal mineralization; and (v) a regional zonation of gold deposits that seems to be a unique feature of the Slave Province. Contrasts in structure are also significant: the large-scale linear belts and boundaries (sutures?) that characterize the Superior Province have no obvious counterpart in the Slave Province. Despite some similarities with other Archean cratons, the distinct features of the Slave Province are important, for they imply that no single Archean craton should be used to develop a universal paradigm for the genesis and tectonic evolution of Archean crust.


1988 ◽  
Vol 25 (12) ◽  
pp. 2075-2088 ◽  
Author(s):  
David R. Melling ◽  
Charles E. Blackburn ◽  
David H. Watkinson ◽  
Jack R. Parker

The Archean volcanic rocks in the Cameron–Rowan lakes area may be divided into three distinct successions based on field mapping, petrographic studies, and lithogeochemical characteristics. The lowermost Rowan Lake Volcanics are tholeiitic pillowed basalts. These rocks are unconformably overlain by the Cameron Lake Volcanics, a mixed succession of tholeiitic massive and pillowed basalts and intermediate to felsic volcaniclastic rocks. The Brooks Lake Volcanics consist of tholeiitic basalts and represent the youngest volcanic rocks at the top of the preserved succession.Most of the gold concentrations in the Cameron–Rowan lakes area are confined to the mixed Cameron Lake Volcanics. The majority of these, including the Cameron Lake deposit, occur within shear zones near lithologic contacts. In the Eagle–Wabigoon and Manitou lakes areas there are similar stratigraphic subdivisions of the supracrustal rocks and many of the gold concentrations also occur in deformation zones within the mixed volcanic successions. The contrasting competencies among the basalts, the intermediate to felsic volcaniclastic rocks, and the intrusive rocks, which are characteristic of the mixed volcanic successions, localized stress during deformation, forming shear zones into which gold-bearing fluids gained access. The potential for successfully delineating economic gold concentrations appears greatest in the mixed volcanic successions within these areas and elsewhere in the western Wabigoon Subprovince of the Canadian Shield.


1999 ◽  
Vol 36 (7) ◽  
pp. 1111-1130 ◽  
Author(s):  
Wouter Bleeker ◽  
John WF Ketchum ◽  
W J Davis

The basement-cover high-strain zone enveloping parts of the Sleepy Dragon Complex, northeast of Yellowknife, Slave Province, Canada, has been reinvestigated. Integrated stratigraphic, structural, and geochronological data show that the high-strain zone is of regional extent and is best interpreted as a décollement between crystalline, ca. 2.9-3.3 Ga rocks of the Central Slave Basement Complex and pre-2687 Ma cover rocks. Three temporally distinct mafic dyke swarms occur within the high-strain zone. The two oldest of these constrain the timing of the high-strain event to between 2734 ± 2 and 2687 ± 1 Ma. At the time of décollement development, the cover stratigraphy consisted of (i) the Central Slave Cover Group, a thin, pre-2734 Ma succession of mafic and ultramafic volcanic rocks, conglomerates, fuchsitic quartzites, minor rhyolites, and banded iron formation; and (ii) an overlying sequence of tholeiitic pillow basalts. The Central Slave Cover Group is considered to be autochthonous, whereas a variety of evidence suggests that the pillow basalts are parautochthonous to possibly allochthonous. The transport direction in the décollement was from northeast to southwest, and maximum displacement was probably on the order of 10 to several tens of kilometres. Presently, the décollement appears discontinuous due to younger intrusive and erosional events. Around most of the southern flanks of the Sleepy Dragon Complex, the crystalline core of the complex consists of post-décollement intrusive rocks and (or) is unconformably overlain by parts of the Yellowknife Supergroup that are younger than 2687 Ma. Lineation patterns in these younger rocks reflect regional deformation events that postdate and are unrelated to the décollement. The new data allow two tectonic models for development of the décollement: (i) a contractional thrusting model, involving collision of an eastern Slave Province arc terrane; or (ii) a syn-greenstone belt extensional model.


2021 ◽  
Vol 9 ◽  
Author(s):  
Myo Kyaw Hlaing ◽  
Kotaro Yonezu ◽  
Khin Zaw ◽  
Aung Zaw Myint ◽  
May Thwe Aye ◽  
...  

The Mergui Belt of Myanmar is endowed with several important orogenic gold deposits, which have economic significance and exploration potential. The present research is focused on two gold districts, Modi Taung-Nankwe and Kyaikhto in the Mergui Belt comparing their geological setting, ore and alteration mineralogy, fluid inclusion characteristics, and ore-forming processes. Both of the gold districts show similarities in nature and characteristics of gold-bearing quartz veins occurring as sheeted veins, massive veins, stockworks to spider veinlets. These gold deposits are mainly hosted by the mudstone, slaty mudstone, greywacke sandstone, slate, and slaty phyllite of Mergui Group (dominantly of Carboniferous age). The gold-bearing quartz veins generally trend from NNE to N-S, whereas some veins strike NW-SE in all deposits. The gold-bearing quartz veins are mainly occurred within the faults and shear zones throughout the two gold districts. Wall-rock alterations at Shwetagun are mainly silicification, chloritization, and sericitization, whereas in Kyaikhto, silicification, carbonation, as well as chloritization, and sericitization are common. At Shwetagun, the gold occurred as electrum grains in fractures within the veins and sulfides. In Kyaikhto, the quartz-carbonate-sulfide and quartz-sulfide veins appeared to have formed from multiple episodes of gold formation categorizing mainly as free native gold grains in fractures within the veins or invisible native gold and electrum within sulfides. At Shwetagun, the ore minerals in the auriferous quartz veins include pyrite, galena, and sphalerite, with a lesser amount of electrum, chalcopyrite, arsenopyrite, chlorite, and sericite. In Kyaikhto, the common mineralogy associated with gold mineralization is pyrite, chalcopyrite, sphalerite, galena, pyrrhotite, arsenopyrite, marcasite, magnetite, hematite, ankerite, calcite, chlorite, epidote, albite, and sericite. At Shwetagun, the mineralization occurred at a varying temperature from 250 to 335°C, with a salinity range from 0.2 to 4.6 wt% NaCl equivalent. The Kyaikhto gold district was formed from aqueous–carbonic ore fluids of temperatures between 242 and 376°C, low to medium salinity (<11.8 wt% NaCl equivalent), and low CO2 content. The ore-forming processes of the Shwetagun deposit in the Modi Taung-Nankwe gold district and the Kyaikhto gold district are remarkably comparable to those of the mesozonal orogenic gold systems.


PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document