Pb–Zn occurrences and their Pb-isotopic signatures bearing on metallogeny and mineral exploration—Paleozoic sedimentary rocks, northern Appalachians, Quebec

1988 ◽  
Vol 25 (11) ◽  
pp. 1777-1790 ◽  
Author(s):  
K. Schrijver ◽  
E. Marcoux ◽  
G. Beaudoin ◽  
J. Y. Calvez

Galena Pb-isotope ratios of epithermal vein and disseminated sulfide occurrences in the Taconian Orogen and Siluro-Devonian basin cluster around 17.90–18.05 for 206Pb/204Pb and 37.70–38.00 for 208Pb/204Pb. The major source of Pb in most, if not all, occurrences is a fairly common continental crust, a characteristic found in published analyses of Grenville feldspar Pb. A southwest to northeast increase in galena 206Pb/204Pb ratios is ascribed to the supply of several types of detritus from Grenville basement during the Cambro-Ordovician: coarse-grained, K-feldspar-bearing in the southwest, grading into fine-grained phyllitic, and relatively more highly radiogenic in the northeast.Emplacement (i) of Pb–Zn–barite veins and disseminations, commonly of homogeneous crustal Pb-isotopic signature, was late Taconian; (ii) of Pb–Zn–quartz veins, of less homogeneous signature, was post-Taconian; and (iii) of Pb–Zn–carbonate veins, relatively highly radiogenic and commonly homogeneous, was late or post-Acadian. Signatures of the first-mentioned group seem to be most useful in exploration.

Author(s):  
John Parnell ◽  
Ian Swainbank

ABSTRACTThe lead isotope compositions of 61 galenas from central and southern Scotland vary markedly between different regions. Most galenas from the southern Grampian Highlands yield isotope ratios (206Pb/204Pb 17·77 ± 0·25, 207Pb/204Pb 15·47 ± 0·05, 208Pb/204Pb 37·63 ± 0·26) less radiogenic than those from Midland Valley galenas (18·22 ± 0·12, 15·55 ± 0·05, 38·13 ± 0·14) whilst galena lead from the Southern Uplands (18·28 ± 0·12, 15·56 ± 0·03, 38·21 ± 0·18) is more radiogenic than that from the southern Midland Valley (18·12 ± 0·06, 15·52 ± 0·02, 38·06 ±0·10). The change in isotopie composition across the Highland Boundary fault reflects the presence or absence of Dalradian rocks which included a magmatic component of lead. Galenas from the Dalradian sequence in Islay, where igneous rocks are lacking, have a composition (18·14±0·04, 15·51±0·01, 37·90±0·02) more like Midland Valley galenas. In the Southern Uplands, galenas yield lead isotope ratios similar to those of feldspars from Caledonian granite (18·30 ± 0·14, 15·57 ± 0·04, 37·96 ± 0·15) analysed by Blaxland et al. (1979). The similar ratios reflect the incorporation of Lower Palaeozoic sedimentary rocks into the granite magma, rather than a granitic source for the mineralisation. The granites were then thermal-structural foci for later mineralising fluids which leached metals from the surrounding rocks. Within the Midland Valley, galenas hosted in Lower Devonian-Lower Carboniferous lavas are notably more radiogenic (18·31 ±0·12, 15·58 ± 0·06, 38·20 ± 0·16) than sediment-hosted galenas (18·14 ± 0·07, 15·52 ± 0·02, 38·08 ± 0·10). The Devonian lavas at least may have inherited lead from subducted (? Lower Palaeozoic) rock incorporated in the primary magma.


2021 ◽  
Author(s):  
Abimbola Chris Ogunyele ◽  
Tommaso Giovanardi ◽  
Mattia Bonazzi ◽  
Maurizio Mazzucchelli ◽  
Alberto Zanetti

<p>The Ivrea-Verbano Zone (IVZ, westernmost sector of the Southern Alps) represents a unique opportunity to investigate the Paleozoic to Mesozoic geodynamic evolution of the Gondwana and Laurasia boundary from the perspective of the lower continental crust. Only recently, the petrochemical record of Triassic-Jurassic magmatism has been recognized. It mainly affected the northernmost tip, the Finero Complex, where the continental crust was tectonically thinned before opening of Alpine Tethys. However, the Mesozoic magmatism in the Finero Complex is still poorly-constrained. Firstly, its extent is largely unknown, because the mantle and crustal intrusives were already enriched by Paleozoic processes. Secondly, Mesozoic melts migration started when the Finero Complex was still placed at P-T conditions typical of a continental crust-mantle transition (1 GPa): this has promoted the reopening of the geochronological clocks in both Paleozoic and Mesozoic rocks, which usually provides wide time intervals. Lastly, the finding of Mesozoic magmatism as composite veins/pods and metasomatised layers has not allowed an exhaustive reconstruction of the primitive melts geochemistry. To place further constraints on such issue, a new dyke swarm cropping out in the Finero Phlogopite Peridotite mantle unit has been investigated. Dykes usually cut at high angle the mantle foliation and are up to 60 cm thick. They are composed by coarse-grained hornblendite to anorthosite, both phlogopite/biotite-bearing. Many dykes are composite, showing variable proportions of hornblendite and anorthosite. In places, the dyke swam was affected by volatiles overpressure as late magmatic stage, which produced plastic flow and development of a porphyroclastic structure by deformation of the early cumulates, with widespread segregation of a fine-grained mica matrix.</p><p>Dykes mainly consist of pargasite, phlogopite/biotite, albite (An 8-10), in association with apatite, monazite, ilmenite, zircon, Nb-rich oxides, carbonates. Enrichments in Fe (amphibole and biotite) and Na (plagioclase) suggest segregation from evolved melts, strongly enriched in H<sub>2</sub>O, P, C. The large LILE and LREE contents in amphiboles, sometimes associated to high Nb, Ta, Zr and Hf concentrations, as well as the mineral assemblage, support an alkaline affinity of the melts. The strongly positive εHf<sub>t </sub>(+10) of zircons and the isotopic Sr composition of amphiboles (0.7042) point to a derivation of the melts from mildly enriched sources, possibly located at the crust-mantle interface.</p><p>Zircons from anorthosite layers are mostly anhedral fragments. They show homogenous internal structure or sector zoning. Concordant <sup>206</sup>Pb/<sup>238</sup>U zircon ages vary from 221 ± 9 Ma to 192 ± 8 Ma. The results of this study confirm that mantle input to the Southern Alps magmatism was of alkaline affinity from Norian to Sinemurian. A widespread fluids circulation induced by such magmatism at high P-T conditions was likely the main cause of the diffuse geochronological reset towards Mesozoic ages of the northern IVZ.</p>


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fathan Hanifi Mada Mahendra ◽  
I Gde Budi Indrawan ◽  
Sugeng Sapto Surjono

The Gedangsari and Ngawen area is predominantly composed of volcanic and volcaniclastic sequencesdistributed east – west direction of the northern parts of Southern Mountain. The massive tectonism as well as tropical climatein this region have been producing weathering profiles in varying thickness which inevitably affects thegeotechnical properties. This study aims to assess the dominant weathering profileof the lower part of Kebo-Butak Formation as well as evaluating the distribution of the discontinuity. In order to know the dominant weathering profile and discontinuity evaluation, this study utilizes a total of  26 panels from five stations investigated through a geotechnical data acquisition including the geological condition, weathering zones, joint distribution, and discontinuity characteristics. The result shows four types of dominant weathering profiles in lower part of Kebo-Butak Formation called as dominant weathering profile A, B, C, and D. Profile A, B, C consisted of a relatively identical weathering degree pattern of fresh, slightly, moderately, completely weathered zone with the variation of thicknesses. However, the weathering degree in profile D reached the residual soil degree controlled by more intensive joints. The fine-grained sedimentary rocks also tends to have smaller spacing, shorter persistence, and higher weathering degree of discontinuities as compared to coarse-grained sedimentary rocks.


Author(s):  
Neil A Fernandes ◽  
Gema R. Olivo ◽  
Daniel Layton-Matthews ◽  
Alexandre Voinot ◽  
Donald Chipley ◽  
...  

ABSTRACT Different types of sediment-hosted whole-rock Pb isotope (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) compositions were determined from phyllites, carbonaceous phyllites (>1% TOC), and meta-litharenites belonging to the Serra do Garrote Formation, which is part of the Proterozoic Vazante Group, Brazil. Results were integrated with lithogeochemistry in order to identify the Pb isotopic signature of Zn enrichment (up to 0.24 wt.% Zn) associated with meta-siliciclastic-hosted sulfide mineralization that formed prior to the Brasiliano Orogeny (850 to 550 Ma) in order to (1) understand the nature of siliciclastic sediment sources, (2) identify possible metal sources in pre-orogenic meta-siliciclastic-hosted Zn mineralization, and (3) evaluate the genetic links between the Zn enrichment in the relatively reduced phyllite package, and different styles of syn-orogenic Zn ± Pb mineralization (hypogene Zn-silicate and Zn-Pb sulfide) in overlying dolomitic carbonates throughout the Vazante-Paracatu Zn District, Brazil. The whole-rock 206Pb/204Pb and 207Pb/204Pb isotope ratios of meta-siliciclastic rocks plot as positively sloping, sub-parallel arrays with radiogenic, upper continental crust compositions, which could represent a detrital contribution from at least two upper continental crust sources. However, the 206Pb/204Pb versus 207Pb/204Pb isotope system does not distinguish between Zn-enriched samples and un-mineralized samples. In the whole-rock 206Pb/204Pb–208Pb/204Pb plot, Zn-enriched samples form a flat trend of lower 208Pb/204Pb values (38.3 to 39.5) compared to the Zn-poor ones that follow common upper crustal trends. Zinc-enriched samples have low whole-rock Th/U values (<4) and higher whole-rock U concentrations compared to unmineralized samples. These support the hypothesis that U (± Pb) was added by pre-orogenic metalliferous fluids, which were in turn derived from underlying Paleoproterozoic and Archean basement rocks. Due to U addition, the original whole-rock thorogenic and uranogenic Pb isotope systems were decoupled in mineralized samples. Pre-orogenic metalliferous fluids have similar present-day first-order characteristics, including: (1) relatively high U/Pb and (2) low Th/U values, when compared to galena in the major carbonate-hosted Zn ± Pb deposits (Vazante, Morro Agudo, Ambrosia, Fagundes) in the Vazante Group. These results support the hypothesis that Zn-rich layers and veins in mineralized carbonaceous phyllites could be linked to the same origins as carbonate-hosted mineral deposits throughout the Vazante Basin, but further data are warranted. We suggest that the tectonic evolution of the Vazante Basin saw multiple phases of Zn-rich mineralization over protracted time periods from around 1200 to 550 Ma.


1997 ◽  
Vol 61 (407) ◽  
pp. 531-541 ◽  
Author(s):  
M. J. Le Bas ◽  
B. Spiro ◽  
Yang Xueming

AbstractThe large Fe-Nb-REE deposit at Bayan Obo is hosted by a dolomite marble within the thrust complex of marbles, quartzites and slates that belongs to the Bayan Obo Formation of mid-Proterozoic age. The dolomite is either a dolomitized sedimentary limestone subsequently mineralized and tectonically thrust and folded, or a dolomite (or dolomitized) carbonatite intrusion with late-stage recrystallization and mineralization that has been subsequently tectonically deformed.O and C isotope data indicate that the sedimentary limestones and dolomites of the Bayan Obo Formation, which occur in the thrust stack together with quartzites and slates, have values of δO c. +20 per mil (SMOW) and δC c. zero. In contrast, the coarser grained facies of the large (0.5 × 10 km) dolomite marble which hosts the REE ore body has δO per mil values between +8 and +12 and δC values between −5 and −3, whereas the finer-grained recrystallized and REE-mineralized dolomite marble which occurs close to the ore bodies has δO between +12 to +16 and δC between −4 and zero. 87Sr/86Sr data confirm this distinction: >0.710 for the sedimentary rocks and <0.704 for the coarse- and fine-grained dolomite marbles.These data are taken to indicate that the large and coarse-grained dolomite was an igneous carbonatite (as borne out by its fenitic contact rocks and trace element geochemistry), and that the finer grained dolomite recrystallized under the influence of mineralizing solutions which entrained groundwater. The stratiform features in the coarse-grained dolomite that are evident in the field are interpreted as tectonic layering.


GeoArabia ◽  
2008 ◽  
Vol 13 (4) ◽  
pp. 45-72
Author(s):  
Ruben Rieu ◽  
Philip A. Allen

ABSTRACT The Huqf Supergroup in Oman contains an exceptionally well-preserved and complete sedimentary record of the Late Neoproterozoic era, including the oldest components in some of Oman’s hydrocarbon plays. Outcrops of the Huqf Supergroup in northern and central Oman are now well-documented. However, a key succession in the Mirbat area of southern Oman, the Mirbat Group, which includes a stratigraphic interval missing elsewhere in the Arabian Peninsula, remains poorly understood. The &lt;1.5 km-thick Cryogenian (850–635 Ma) Mirbat Group comprises an essentially continuous succession of little-deformed sedimentary rocks containing two glacial intervals separated by c. 1 km of non-glacial marine deposits. The lowermost glacial interval (Ayn Formation) occupies deep paleovalleys incised into crystalline basement. The overlying Arkahawl Formation records at its base a major post-glacial transgression over the previous basin margin and a 300 to 400 m-thick turbidite complex consisting of 1 to 5 km-wide, coarse-grained depositional lobes embedded vertically and laterally in fine-grained distal turbidite fan deposits. Ayn Formation paleovalleys continued to serve as sediment transport routes for the coarse-grained turbidite complexes of Arkahawl times. The turbidite complex deposits gradationally pass up into a c. 500 m-thick unit of distal-marine mudstone and siltstone. The overlying c. 100 m-thick Marsham Formation records highstand deposition and the pulsed progradation of shallow-marine and fluvial deposits over offshore mudstone and siltstone in the approach to a second glaciation, represented by the Shareef Formation. The sedimentary succession described in this paper is believed to largely fill the stratigraphic gap present between the Ghubrah and Fiq formations in the Al Jabal al-Akhdar in northern Oman represented by an unconformity.


2021 ◽  
Vol 13 (16) ◽  
pp. 9020
Author(s):  
Nabeel Abdullah Alrabie ◽  
Ferdaus Mohamat-Yusuff ◽  
Rohasliney Hashim ◽  
Zufarzaana Zulkeflee ◽  
Mohammad Noor Azmai Amal ◽  
...  

Uncontrolled urbanization and growing industrialization are major sources of pollutants that affect the urban stormwater quality and, therefore, the receiving aquatic environment. The concentrations of heavy metals (As, Cd, Cr, Cu, Fe, Ni, Pb, and Zn), and Pb isotope ratios in surface sediment samples obtained from SMART holding and storage ponds located in Kuala Lumpur were investigated using inductively coupled plasma-mass spectrometry (ICP-MS). The highest metal concentrations were found at the SMART holding pond (SHP), the first recipient of urban stormwater runoff from the SMART system catchment area. As, Cd, Pb, and Zn are the dominant metal contaminants in the sediments of both SMART ponds, with values exceeding the average shale values. According to contamination indices applied to evaluate the environmental risk caused by heavy metals, As had the highest values among the metals examined, denoting moderate contamination. Hence, it can frequently cause harmful effects on the sediment-living species. The Pb isotope ratios (206Pb/207Pb and 208Pb/207Pb) indicated that coal combustion was the foremost source of anthropogenic Pb in the sediments of both SMART ponds. The control of coal combustion and sites undergoing intensive human activities should be given priority in the foreseeable future.


Mineralogia ◽  
2012 ◽  
Vol 43 (1-2) ◽  
pp. 3-127 ◽  
Author(s):  
Anna Wolska

AbstractGranitic plutons (the Dolina Będkowska valley and Pilica area) were found in a few boreholes in the Małopolska Block (MB). These granitic rocks may represent apical parts (apophyses) of a great magmatic bodies (batholiths) located in deeper level of the Ediacaran/Paleozoic basement. They are described as ‘stitching intrusions’, generated during/after collision in Carboniferous/Permian period (~300 Ma) between the Upper Silesian Block (USB) and the Małopolska Block (MB).These rocks are fresh, unaltered granodiorites that are pale grey in colour. They have holocrystalline, medium- to coarse-grained structure and massive texture. For the first time, several mafic microgranular enclaves (MME), varying in size and colour, were found in the granodioritic host (HG). The occurrence of MME in the host granodioritic rocks is evidence of a mingling process between mafic and felsic magmas.The MME are pale/dark grey in colour, fine-grained rocks with ‘porphyritic’ textures. They consist of large megacrysts/xenocrysts of plagioclase, quartz, alkali feldspars and the fine-grained groundmass of pseudo-doleritic textures (lath-shaped plagioclases, blade-shaped amphiboles/biotites). According to their modal/mineral composition, they represent Q-diorites and tonalites.The MME, similar to the host granodiorites (HG), are I-type rocks, exhibit high Na2O content >3.2 wt%; normative diopside or normative corundum occurs (mainly <1%). They are metaluminous to slightly peraluminous (ASI <1.1) and have calc-alkaline, medium-K to high-K character. They generally belong to magnesian series (#Mg=0.20-0.40) and have low agpaitic index (<0.87). They are low evolved magmatic rocks. The rocks studied are enriched in LREEs (La, Ce, Sm) compared to HREEs. The Eu* negative anomaly and high Sr contents point to varying degrees of plagioclase fractionation connected to the mixing process rather than simple fractional crystallization. Both rocks studied (HG and MME) are characterized by a high content of LILEs (K, Ba, Rb) in normalized patterns and a low HFS/LIL elements ratio (Ta, Nb)/(K, Rb, La). The projection points of the rocks studied plot in different fields of various petrochemical diagrams: mainly in the arc granites that are rare in the pre-collisional granites as well as the syn-subductional to post-collisional granites fields.For the first time, inner textures in rock-forming minerals related to mixing processes are described both in the granodioritic host (HG) and in the MME. Mantled boxy cellular plagioclase megacrysts with ‘old cores’ of labradorite composition, and amphibole aggregates with titanite and opaque minerals, represent peritectic rather than primary residual minerals. The plagioclase, quartz and alkali feldspar megacrysts/xenocrysts were mechanically transferred from the granodioritic host (HG) to MME. The presence of lath-shaped plagioclases, blade-shaped amphiboles/biotites and acicular-shaped apatites in the groundmass of the MME is evidence of undercooling of hot mafic blobs in a relatively cold granodioritic magma chamber. The MME were hybridized by leucocratic melt squeezed from the granodioritic magma in a later stage of the mixing process (quartz and alkali crystals in the interstices in the MME groundmass). In the granodiorites (HG), the spike and spongy cellular zones as well as biotite/amphibole zones in plagioclase megacrysts are connected to the mixing process.Both of the rocks studied are characterized by different amounts of major elements (SiO2, Na2O and K2O), trace elements (Ni, Cr, V, Ti and P), #Mg and modified alkali-lime index (MALI) that is related to their origins from different sources. On the other hand, they have similar chondrite-normalized patterns (for trace elements and REE), LILEs contents (Sr, Ba, Rb), aluminum saturation index (ASI) and isotopic signatures (high 86Sr/87Sr (0.079-0.713) and low 143Nd/144Nd (0.512) values but lower than in continental crust), which are evidence of the strong hybridisation of mafic enclaves by the granodioritic host magma. The parental rocks of both rocks studied have a similar mafic signature but were generated in different sources: the host granodiorites (HG) magma in lower continental crust rocks, and the MME magma in enriched upper mantle. The MME crystallized from strongly hybridized magma of intermediate compositions (Q-diorite, tonalite) rather than from primary mafic magma. The host granodiorites (HG) originated from completely homogenized crustal granodioritic magma which inherited its geochemical signature from ancient arc-rocks in a subduction-related setting


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Stephen Smith ◽  
Raymond Mauldin ◽  
Cynthia M. Munoz ◽  
Robert Hard ◽  
Debajyoti Paul ◽  
...  

Most ecological proxies used in archaeological research operate at scales that are too coarse-grained for consideration of huntergatherer adaptive decisions. Hunter-gatherers adapt to local ecological conditions and short (<em>e.g.</em> seasonal, yearly) time frames. Our goal is to develop proxies to identify ecological shifts at fine-grained temporal and spatial scales for archaeological research. We use stable carbon isotope ratios (δ13C) in bone collagen from 58 modern leporids from two distinct ecological areas in the American Southwest as a proxy to reconstruct vegetation and climate patterns at fine-grained scales. Higher δ13C values in collagen of cottontail (<em>Sylvilagus</em> sp.) and jackrabbit (<em>Lepus</em> sp.) collected in the northern Chihuahuan Desert of New Mexico and West Texas suggest a more C4/crassulacean acid metabolism (CAM) dominated local vegetation when contrasted to samples from Kerr County in Central Texas. Comparisons of temperature and precipitation patterns between the two areas, along with vegetation data, suggest that key ecological differences, reflected in the collagen isotopic compositions, are likely related to rainfall amounts and the type of green forage available to leporids, especially during winter months. Leporids in dry areas may be relying on CAM plants, including prickly pear, which has a C4 isotopic signature. Alternative resources are likely to be available in wetter areas such as Central Texas.


2020 ◽  
Vol 24 (1) ◽  
pp. 5-18
Author(s):  
Sonia Rojas Barbosa ◽  
Juan Carlos Molano ◽  
Thomas Cramer

The gold mineralization located in Vetas, Santander, consists of auriferous quartz veins hosted in Bucaramanga gneiss rocks, intrusive Jurassic rocks, and intrusive to porphyritic Miocene rocks. This study identified four mineralizing events: (1). Sericite, carbonate (ankerite and calcite?), massive and microcrystalline quartz, sphalerite, adularia, albite, galena, thin pyrite, pyrrhotite, chalcopyrite. The age for this stage is 10.78 ±0.23Ma (Ar/Ar on sericite). (2). Molybdenite, magnetite with exsolution of ilmenite, As-pyrite, sphalerite, fine-grained pyrite and little chalcopyrite quartz with huge, feathery, fine mosaic, flamboyant and microcrystalline textures and, tourmaline and sericite. (3). Gold and tennantite associated with sphalerite, fine- and coarse-grained pyrite, As-pyrite, chalcopyrite like inclusions, and quartz with flamboyant, mosaic, massive and “comb” textures, and tourmaline. Stage 2 and 3 happened from 7.58 ±0.15 Ma to 6,89±0,41Ma (Ar/Ar on sericite). (4). Thick, thin, and pyrite with arsenic, hematite and microcrystalline quartz (forming breccia texture), and sericite. The age for this stage is 5.24 ±0.10 (Ar/Ar on sericite). Post-mineral: quartz comb, alunite, halloysite, kaolinite, and ferrum hydroxides. The stable isotopes, ∂18O, ∂D, and ∂34S and fluid inclusions analysis infer that fluids were producing a mixture of meteoric and magmatic fluids with low salinity and minimum trapping temperatures between 200°C to 390°C. The mineralogy association, and fluid inclusions, in the first event show characteristic of low sulfidation epithermal. The second stage was hottest and with more magmatic signature over printed an intermediate sulfidation system; show a little more salinity on the fluids and more mineralogical diversity, the third and four events, could show an evolution of this fluid, where it was cooling and impoverishing on metals. Two initials stages are contemporaneous with two magmatic Miocene pulses on the area: the first one of granodiorite composition 10, 9± 0.2 Ma (U/Pb zircon), and the other one rhyodacite with 8.4 ±0.2 y 9.0 ± 0.2 Ma.


Sign in / Sign up

Export Citation Format

Share Document