scholarly journals Petrography, microthermometry, and isotopy of the gold veins from Vetas, Santander (Colombia)

2020 ◽  
Vol 24 (1) ◽  
pp. 5-18
Author(s):  
Sonia Rojas Barbosa ◽  
Juan Carlos Molano ◽  
Thomas Cramer

The gold mineralization located in Vetas, Santander, consists of auriferous quartz veins hosted in Bucaramanga gneiss rocks, intrusive Jurassic rocks, and intrusive to porphyritic Miocene rocks. This study identified four mineralizing events: (1). Sericite, carbonate (ankerite and calcite?), massive and microcrystalline quartz, sphalerite, adularia, albite, galena, thin pyrite, pyrrhotite, chalcopyrite. The age for this stage is 10.78 ±0.23Ma (Ar/Ar on sericite). (2). Molybdenite, magnetite with exsolution of ilmenite, As-pyrite, sphalerite, fine-grained pyrite and little chalcopyrite quartz with huge, feathery, fine mosaic, flamboyant and microcrystalline textures and, tourmaline and sericite. (3). Gold and tennantite associated with sphalerite, fine- and coarse-grained pyrite, As-pyrite, chalcopyrite like inclusions, and quartz with flamboyant, mosaic, massive and “comb” textures, and tourmaline. Stage 2 and 3 happened from 7.58 ±0.15 Ma to 6,89±0,41Ma (Ar/Ar on sericite). (4). Thick, thin, and pyrite with arsenic, hematite and microcrystalline quartz (forming breccia texture), and sericite. The age for this stage is 5.24 ±0.10 (Ar/Ar on sericite). Post-mineral: quartz comb, alunite, halloysite, kaolinite, and ferrum hydroxides. The stable isotopes, ∂18O, ∂D, and ∂34S and fluid inclusions analysis infer that fluids were producing a mixture of meteoric and magmatic fluids with low salinity and minimum trapping temperatures between 200°C to 390°C. The mineralogy association, and fluid inclusions, in the first event show characteristic of low sulfidation epithermal. The second stage was hottest and with more magmatic signature over printed an intermediate sulfidation system; show a little more salinity on the fluids and more mineralogical diversity, the third and four events, could show an evolution of this fluid, where it was cooling and impoverishing on metals. Two initials stages are contemporaneous with two magmatic Miocene pulses on the area: the first one of granodiorite composition 10, 9± 0.2 Ma (U/Pb zircon), and the other one rhyodacite with 8.4 ±0.2 y 9.0 ± 0.2 Ma.

Discourse ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 18-25
Author(s):  
A. I. Ponomarev

Introduction. In modern philosophy of perception, the issue of the content of perceptual mental states is actively discussed, in particular the possibility of nonconceptual content is one of the most significant problem. Usually conceptual activity is attributed to thinking, and perception is intended to be non-conceptual. Such an approach may deprive perception of opportunity to serve as a basis for judgment. The paper analyzes Tye’s theory of non-conceptual content of perceptual mental states, which does not deprive the perception of its epistemological function.Methodology and sources. Methodologically, the research work is based on philosophical analysis of modern theories of perception and results of cognitive research.Results and discussion. In accepted terminology, the content of perceptual mental states can be of three types: conceptual, non-conceptual detailed (fine-grained) and nonconceptual coarse (coarse-grained). Tye's position is that perceptual mental states have only the third kind of content. This approach faces a number of objections that are presented in this paper. The analysis of objections shows their surmount ability, thus, it can be concluded that the Tye’s position of nonconceptual content can be considered as reasonable. The main result of the presented research is the presentation of additional grounds for the theory of non-conceptual content of perceptual mental states.Conclusion. The problem of the content of perceptual mental states is crucial for understanding the epistemological role of perception. The theory of non-conceptual content of perceptual mental states provides new insights into perception.


2017 ◽  
Vol 54 (5) ◽  
pp. 494-511 ◽  
Author(s):  
Xi-hui Cheng ◽  
Jiu-hua Xu ◽  
Jian-xiong Wang ◽  
Qing-po Xue ◽  
Hui Zhang

The Hamadi gold deposit is located in North Sudan, and occurs in the Neoproterozoic metamorphic strata of the Arabian–Nubian Shield. Two types of gold mineralization can be discerned: gold-bearing quartz veins and altered rock ores near ductile shear zones. The gold-bearing quartz veins are composed of white to gray quartz associated with small amounts of pyrite and other polymetallic sulfide minerals. Wall-rock alterations include mainly beresitization, epidotization, chloritization, and carbonatization. CO2-rich inclusions are commonly seen in gold-bearing quartz veins and quartz veinlets from gold-bearing altered rocks; these include mainly one-phase carbonic (CO2 ± CH4 ± N2) inclusions and CO2–H2O inclusions with CO2/H2O volumetric ratios of 30% to ∼80%. Laser Raman analysis does not show the H2O peak in carbonic inclusions. In quartz veins, the melting temperature of solid CO2 (Tm,CO2) of carbonic inclusions has a narrow range of −59.6 to −56.8 °C. Carbonic inclusions also have CO2 partial homogenization temperatures (Th,CO2) of −28.3 to +23.7 °C, with most of the values clustering between +4.0 and +20 °C; all of these inclusions are homogenized into the liquid CO2 state. The densities range from 0.73 to 1.03 g/cm3. XCH4 of carbonic fluid inclusions ranges from 0.004 to 0.14, with most XCH4 around 0.05. In CO2–H2O fluid inclusions, Tm,CO2 values are recorded mostly at around −57.5 °C. The melting temperature of clathrate is 3.8–8.9 °C. It is suggested that the lowest trapping pressures of CO2 fluids would be 100 to ∼400 MPa, on the basis of the Th,CO2 of CO2-bearing one-phase (LCO2) inclusions and the total homogenization temperatures (Th,tot) of paragenetic CO2-bearing two-phase (LCO2–LH2O) inclusions. For altered rocks, the Tm,CO2 of the carbonic inclusions has a narrow range of −58.4 to ∼−57.0 °C, whereas the Th,CO2 varies widely (−19 to ∼+29 °C). Most carbonic inclusions and the carbonic phases in the CO2–H2O inclusions are homogenized to liquid CO2 phases, which correspond to densities of 0.70 to ∼1.00 g/cm3. Fluid inclusions in a single fluid inclusion assemblage (FIA) have narrow Tm,CO2 and Th,CO2 values, but they vary widely in different FIAs and non-FIAs, which indicates that there was a wide range of trapping pressure and temperature (P–T) conditions during the ore-forming process in late retrograde metamorphism after the metamorphism peak period. The carbonic inclusions in the Hamadi gold deposit are interpreted to have resulted from unmixing of an originally homogeneous aqueous–carbonic mixture during retrogress metamorphism caused by decreasing P–T conditions. CO2 contributed to gold mineralization by buffering the pH range and increasing the gold concentration in the fluids.


1988 ◽  
Vol 25 (11) ◽  
pp. 1777-1790 ◽  
Author(s):  
K. Schrijver ◽  
E. Marcoux ◽  
G. Beaudoin ◽  
J. Y. Calvez

Galena Pb-isotope ratios of epithermal vein and disseminated sulfide occurrences in the Taconian Orogen and Siluro-Devonian basin cluster around 17.90–18.05 for 206Pb/204Pb and 37.70–38.00 for 208Pb/204Pb. The major source of Pb in most, if not all, occurrences is a fairly common continental crust, a characteristic found in published analyses of Grenville feldspar Pb. A southwest to northeast increase in galena 206Pb/204Pb ratios is ascribed to the supply of several types of detritus from Grenville basement during the Cambro-Ordovician: coarse-grained, K-feldspar-bearing in the southwest, grading into fine-grained phyllitic, and relatively more highly radiogenic in the northeast.Emplacement (i) of Pb–Zn–barite veins and disseminations, commonly of homogeneous crustal Pb-isotopic signature, was late Taconian; (ii) of Pb–Zn–quartz veins, of less homogeneous signature, was post-Taconian; and (iii) of Pb–Zn–carbonate veins, relatively highly radiogenic and commonly homogeneous, was late or post-Acadian. Signatures of the first-mentioned group seem to be most useful in exploration.


2019 ◽  
Vol 20 (2) ◽  
pp. 111
Author(s):  
Hasria Hasria ◽  
Arifudin Idrus ◽  
I Wayan Warmada

Recently, gold exploration activities  are not only focused along volcanic-magmatic belt but also starting to shift along metamorphicand sedimentary terrains. The purpose of this study is to analyses the characteristics hydrothermal fluids gold deposits t in the Rumbia Mountains, Bombana Regency, Southeast Sulawesi. There are three generations of veins identified including the first is parallel to the foliations, the second crosscuts the first generation of veins/foliations, and the third is of laminated deformed quartz+calcite veins at the late stage. Temperature of homogenization (Th) and salinity at Rumbia Mountain of the first vein vary from 220 to 355.30oC and 6.74 to 10.11 wt. % NaCl eq., respectively. The second generation vein was originated at Th of 157 to 255.50oC and salinity of 3.39 to 6.88 wt.%NaCl eq., whereas the third generation vein formed at lowest Th varying from 104.40 to 265.90oC and less saline fluid at salinity range between 0.18 and 6.30 wt.% NaCl eq. The result of temperature formation value correlation to the depth of the formation of orogenic gold deposits in Rumbia Mountain is indicated to form on sub-greenschist to greenschist facies at depth of about 4-8 kilometers and formation temperature between 104.40 - 355.30oC at zone epizonal and mesozonal. Based on characteristics fluids inclusion discussed above, the primary metamorphic-hosted gold mineralization type at Rumbia Mountain tends to meet the criteria of orogenic gold type.  Keyword : fluid iclusion, quartz veins, Rumbia mountain, orogenic gold deposits.


Author(s):  
Arifudin Idrus ◽  
Sukamandaru Prihatmoko ◽  
Ernowo Harjanto ◽  
Franz Michael Meyer ◽  
Irzal Nur ◽  
...  

In Indonesia, gold is commonly mined from epithermal-, porphyry-, and skarn-type deposits that are commonly found in volcanic belts along island arcs or active continental margin settings. Numerous gold prospects, however, were recently discovered in association with metamorphic rocks. This paper focuses on metamorphic rock-hosted gold mineralization in Eastern Indonesia, in particular the Bombana (SE Sulawesi) and Buru Island (Maluku) prospects. At Bombana, gold-bearing quartz-veins are hosted by the Pompangeo metamorphic complex. Sheared, segmented veins vary in thickness from 2 cm to 2 m. Gold is mainly present in the form of ‘free gold’ among silicate minerals and closely related to cinnabar, stibnite, tripuhyite, and in places, minor arsenopyrite. The gold distribution is erratic, however, ranging from below detection limit up to 134 g/t. At least three generations of veins are identified. The first is parallel to the foliation, the second crosscuts the first generation of veins as well as the foliation, and the late-stage laminated deformed quartz-calcite vein represents the third mineralization stage. The early veins are mostly massive to crystalline, occasionally brecciated, and sigmoidal, whereas the second-stage veins are narrower than the first ones and less subjected to brecciation. Gold grades in the second- and third-stage veins are on average higher than that in the earlier veins. Microthermometric and Raman spectrometric studies of fluid inclusions indicate abundant H2O-NaCl and minor H2O-NaCl-CO2 fluids. Homogenization temperatures and salinities vary from 114 to 283 ºC and 0.35 to 9.08 wt.% NaCl eq., respectively. Crush-leach analysis of fluid inclusions suggests that the halogen fluid chemistry is not identical to sea water, magmatic or epithermal related fluids, but tends to be similar to fluids in mesothermal-type gold deposits. In Buru Island (Gunung Botak and Gogorea prospects), two distinct generations of quartz veins are identified. Early quartz veins are segmented, sigmoidal discontinuous and parallel to the foliation of the host rock. This generation of quartz veins is characterized by crystalline relatively clear quartz, and weakly mineralized with low sulfide and gold contents. The second type of quartz veins occurs within the ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. Gold mineralization is intensely overprinted by argillic alteration. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. Gold-bearing quartz veins are characterized by banded texture particularly following host rock foliation and sulphide banding, brecciated and rare bladed-like texture. Alteration types consist of propylitic (chlorite, calcite, sericite), argillic and carbonation represented by graphite banding and carbon flakes. Ore mineral comprises pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar and stibnite are present in association with gold. Ore chemistry indicates that 11 out of 15 samples yielded more than 1 g/t Au, in which 6 of them graded in excess of 3 g/t Au. All high-grade samples are composed of limonite or partly contain limonitic material. This suggests the process of supergene enrichment. Interestingly, most of the high-grade samples contain also high concentrations of As (up to 991ppm), Sb (up to 885ppm), and Hg (up to 75ppm). Fluid inclusions in both quartz vein types consist of 4 phases including L-rich, V-rich, L-V-rich and L1-L2-V (CO2)-rich phases. The mineralizing hydrothermal fluid typically is CO2-rich, of moderate temperature (300-400 ºC), and low salinity (0.36 to 0.54 wt.% NaCl eq). Based on those key features, gold mineralization in Bombana and Buru Island tends to meet the characteristics of orogenic, mesothermal types of gold deposit. Metamorphic rock-hosted gold deposits could represent the new targets for gold exploration particularly in Eastern Indonesia.


2015 ◽  
Vol 152 (5) ◽  
pp. 802-812 ◽  
Author(s):  
R. GRANT CAWTHORN

AbstractThe circular 625 km2 alkaline Pilanesberg Complex, South Africa, contains coeval eruptive and several distinctive intrusive syenitic and foyaitic components, concentrically arranged at the surface. However, owing to poor outcrop the relationships between the different intrusive rocks, and their shape in the third dimension cannot be convincingly determined in the field. The original interpretation was a laccolith, whereas later models suggested a funnel shape, and appealed to ring-dyke and cone-sheet emplacement mechanisms. However, the radial widths of these coarse-grained bodies are over 1 km and so cannot have been emplaced as ring dykes or cone sheets, which are usually quite thin and fine grained. Creating the space for emplacement and removal of pre-existing country rocks for each postulated subsequent intrusive event presents a major challenge to this latter hypothesis. Extensive previously published and new field relationships are re-evaluated here to suggest that the body is a gently inward-dipping sheet and that subsequent injections of magma merely pumped up an existing and evolving magma chamber rather than intruded into solid rocks. A Bouguer gravity anomaly model is presented that supports the concept of a shallow, flat-bottomed body rather than one that continues to significant depth. There are many analogies with the Kangerlussuaq Intrusion, Greenland.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 201 ◽  
Author(s):  
Kai Zhao ◽  
Huazhou Yao ◽  
Jianxiong Wang ◽  
Ghebsha Fitwi Ghebretnsae ◽  
Wenshuai Xiang ◽  
...  

: The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on a paragenetic study, two main stages of gold mineralization were identified in the Koka gold deposit: (1) an early stage of pyrite–chalcopyrite–sphalerite–galena–gold–quartz vein; and (2) a second stage of pyrite–quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2–H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268 °C from NaCl–CO2–H2O(–CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen, and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water and magmatic water, whereas the sulfur isotope suggests an igneous origin. The features of geology and ore-forming fluid at the Koka deposit are similar to those of orogenic gold deposits, suggesting that the Koka deposit might be an orogenic gold deposit related to granite.


2014 ◽  
Vol 962-965 ◽  
pp. 277-281
Author(s):  
Cheng Long Shi ◽  
Yang Song ◽  
Jian Zhong Hu

The Huajian gold deposit is located in the metallogenic belt of the northern part of the North China block. This deposit's ore bodies are mainly hosted in metamorphosed Neoarchean and Mesoproterozoic sedimentary rocks, of which Mesozoic volcano-intrusive complexes are closely associated with the Gold mineralization. The FIs of the Huajian deposit are primarily aqueous FIs with minor gas FIs. The pure gas or liquid FIs are very few. The ore-forming fluids were characterised by moderate–low temperature, low salinity and high oxygen fugacity and belonged to an H2O–NaCl ± CO2system. The FIs in quartz veins primarily developed in temperature intervals of 202–380°C, 191–407°C and 170–307°C., corresponding to salinities of 3.85wt.% to 11.23 wt.%, 3.69wt.% to 10.99 wt.% and 2.06wt.% to 17 wt.% NaCl eq.., respectively. The trapping pressures of the FIs from high temperature fluids in the quartz veins are 10-90 MPa, corresponding to depths of 1.0–10 km, assuming a density of the overlying rocks of 0.54 g/cm3–0.98 g/cm3. Multiple stages of phase separation or immiscibility of ore-forming fluid was critical for the formation of the Huajian deposit.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
Nurullah Hanilçi ◽  
Gülcan Bozkaya ◽  
David A. Banks ◽  
Ömer Bozkaya ◽  
Vsevolod Prokofiev ◽  
...  

The deposit occurs in a mid-Miocene monzonite magmatic complex represented by three different intrusions, namely Intrusion 1 (INT#1), Intrusion 2 (INT#2, INT #2A), and Intrusion 3 (INT#3). Gold mineralization is hosted in all intrusions, but INT#1 is the best mineralized body followed by INT#2. SEM-CL imaging has identified two different veins (V1 and V2) and four distinct generations of quartz formation in the different intrusions. These are: (i) CL-light gray, mosaic-equigranular quartz (Q1), (ii) CL-gray or CL-bright quartz (Q2) that dissolved and was overgrown on Q1, (iii) CL-dark and CL-gray growth zoned quartz (Q3), and (iv) CL-dark or CL-gray micro-fracture quartz fillings (Q4). Fluid inclusion studies show that the gold-hosted early phase Q1 quartz of V1 and V2 veins in INT#1 and INT#2 was precipitated at high temperatures (between 424 and 594 °C). The coexisting and similar ranges of Th values of vapor-rich (low salinity, from 1% to 7% NaCl equiv.) and halite-bearing (high salinity: >30% NaCl) fluid inclusions in Q1 indicates that the magmatic fluid had separated into vapor and high salinity liquid along the appropriate isotherm. Fluid inclusions in Q2 quartz in INT#1 and INT#2 were trapped at lower temperatures between 303 and 380 °C and had lower salinities between 3% and 20% NaCl equiv. The zoned Q3 quartz accompanied by pyrite in V2 veins of both INT#2 and INT#3 precipitated at temperatures between 310 and 373 °C with a salinity range from 5.4% to 10% NaCl eq. The latest generation of fracture filling Q4 quartz, cuts the earlier generations with fluid inclusion Th temperature range from 257 to 333 °C and salinity range from 3% to 12.5% NaCl equiv. The low salinity and low formation temperature of Q4 may be due to the mixing of meteoric water with the hydrothermal system, or late-stage epithermal overprinting. The separation of the magmatic fluid into vapor and aqueous saline pairs in the Q1 quartz of the V1 vein of the INT#1 and INT#2 and CO2-poor fluids indicates the shallow formation of the Kışladağ porphyry gold deposit.


Sign in / Sign up

Export Citation Format

Share Document