A Holocene soil-geomorphic record from the Ham site near Frontier, southwestern Saskatchewan

1994 ◽  
Vol 31 (3) ◽  
pp. 532-543 ◽  
Author(s):  
Willem J. Vreeken

The soil-geomorphic evolution of a hillslope in hummocky moraine terrain in one of the most arid parts of the Palliser Triangle is reconstructed from ca. 12 600 BP to the present. A transect from a moraine plateau into an internally drained basin provided evidence for seven postglacial landscape cycles. Each cycle includes a phase of land-surface instability, marked by erosional and depositional imprints, and a phase of stability, marked by pedologic imprints. Five cycles of slope-wash-dominated erosion left behind four superposed downslope-thickening and downslope-fining sediment mantles and were followed by two eolian cycles, each of which left behind a loess mantle that accumulated from a local loess-dispersal system. Accumulation of long-range calcareous dust coincided with each of these loess cycles. The five complete buried soil catenas and the surficial catena have systematic textural differentiation, reflecting the preceding geomorphic regimen, and color differentiation, reflecting the soil-drainage continua. Changes in hillslope hydrology occurred repeatedly throughout the postglacial. The evidence indicates that each element from the 14 successive local soil landscapes reacted to environmental change as a component from a functionally integrated process–response system.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sara Bonetti ◽  
Zhongwang Wei ◽  
Dani Or

AbstractEarth system models use soil information to parameterize hard-to-measure soil hydraulic properties based on pedotransfer functions. However, current parameterizations rely on sample-scale information which often does not account for biologically-promoted soil structure and heterogeneities in natural landscapes, which may significantly alter infiltration-runoff and other exchange processes at larger scales. Here we propose a systematic framework to incorporate soil structure corrections into pedotransfer functions, informed by remote-sensing vegetation metrics and local soil texture, and use numerical simulations to investigate their effects on spatially distributed and areal averaged infiltration-runoff partitioning. We demonstrate that small scale soil structure features prominently alter the hydrologic response emerging at larger scales and that upscaled parameterizations must consider spatial correlations between vegetation and soil texture. The proposed framework allows the incorporation of hydrological effects of soil structure with appropriate scale considerations into contemporary pedotransfer functions used for land surface parameterization.


2021 ◽  
Author(s):  
Laura Bourgeau-Chavez ◽  
Jeremy Graham ◽  
Andrew Poley ◽  
Dorthea Leisman ◽  
Michael Battaglia

<p>Eighty percent of global peatlands are distributed across the boreal and subarctic regions, storing an estimated 30% of earth’s soil organic carbon (1,016 to 1,105 Gt C) despite representing only about 3% of the global land surface. The accumulation of C in peatlands generally depends on hydrologic conditions that maintain saturated soils and impede rates of decomposition. Boreal Peatlands have provided rich reservoirs of stored C for millennia. However, with climate change, warming and drying patterns across the boreal and arctic are resulting in dramatic changes in ecosystems and putting these systems at risk of changing from a C sink to a source.  Recent changes in climate including earlier springs, longer summers and changes in moisture patterns across the landscape, are affecting wildfire regimes of the boreal region including intensity, severity and frequency of wildfires. This in turn has potential to cause shifts in successional trajectories.  Understanding how these changes in climate are affecting peatlands and their vulnerability to wildfire has been a focus of study of the research team since 2009.  Soil moisture is one variable which can provide information to understand wildfire behavior including the depth of peat consumption in these wildfires but it also has a direct effect on post-fire successional trajectories. Further it is needed to understand methane emissions from peatlands.  To develop the soil moisture retrieval algorithms, we studied a range of boreal peatland sites (bogs and fens) stratified across geographic regions from 2012-2014.  We developed soil moisture retrieval algorithms from polarimetric C-band (5.7 cm wavelength) synthetic aperture radar (SAR) data.  Peatlands have low enough aboveground biomass (<3.0 kg/m<sup>2</sup>) to allow this shorter wavelength SAR to penetrate the canopy to reach the ground surface.  Data from over 60, 4 ha sites were collected over 3 seasons from Alaska and Michigan USA and Alberta Canada.  Both multi-linear regressions and general additive models (GAM) were developed.  Using both polarimetric SAR parameters that are sensitive to vegetation structure and parameters most sensitive to surface soil moisture in the models provided the best results.  GAM models were tested in an independent study area, Northwest Territories (NWT), Canada.  The sites of NWT were sampled in 2016-2019 coincident to Radarsat-2 polarimetric image collections.  The high accuracy results will be presented as well as methods developed to use multidate C-band data from Sentinel-1 to classify soil drainage (well drained to poorly drained) in recently burned peatlands.  These products are being used in a fire effects and emissions model, CanFIRE, as we parameterize it for peatlands; as well as the Functionally-Assembled Terrestrial Ecosystem Simulator <strong>(</strong>FATES) to understand the effects of wildfire and hydrology on peatland ecosystems.  Characterization and quantification of boreal peatlands in global C cycling is critical for proper accounting given that peatlands play a significant role in sequestering and releasing large amounts of C. The ability to retrieve soil moisture from C-band SAR, therefore, provides a means to monitor a key variable in scaling C flux estimates as well as understanding the vulnerability and resiliency of boreal peatlands to climate change.</p><p> </p>


2020 ◽  
Author(s):  
Jake D. Graham

Northern peatlands are a major terrestrial carbon (C) store, with an annual sink of 0.1 Pg C yr-1 and a total storage estimate of 547 Pg C. Northern peatlands are also major contributors of atmospheric methane, a potent greenhouse gas. The microtopography of peatlands helps modulate peatland carbon fluxes; however, there is a lack of quantitative characterizations of microtopography in the literature. The lack of formalized schemes to characterize microtopography makes comparisons between studies difficult. Further, many land surface models do not accurately simulate peatland C emissions, in part because they do not adequately represent peatland microtopography and hydrology. The C balance of peatlands is determined by differences in C influxes and effluxes, with the largest being net primary production and heterotrophic respiration, respectively. Tree net primary production at a treed bog in northern Minnesota represented about 13% of C inputs to the peatland, and marks tree aboveground net primary production (ANPP) as an important pathway for C to enter peatlands. Tree species Picea mariana (Black spruce) and Larix Laricina (Tamarack) are typically found in wooded peatlands in North America, and are widely distributed in the North American boreal zone. Therefore, understanding how these species will respond to environmental change is needed to make predictions of peatland C budgets in the future. As the climate warms, peatlands are expected to increase C release to the atmosphere, resulting in a positive feedback loop. Further, climate warming is expected to occur faster in northern latitudes compared to the rest of the globe. The Spruce and Peatland Responses Under Changing Environments (SPRUCE; https://mnspruce.ornl.gov/) manipulates temperature and CO2 concentrations to evaluate the in-situ response of a peatland to environmental change and is located in Minnesota, USA. In this dissertation, I documented surface roughness metrics for peatland microtopography in SPRUCE plots and developed three explicit methods for classifying frequently used microtopographic classes (microforms) for different scientific applications. Subsequently I used one of these characterizations to perform a sensitivity analysis and improve the parameterization of microtopography in a land surface model that was calibrated at the SPRUCE site. The modeled outputs of C from the analyses ranged from 0.8-34.8% when microtopographical parameters were allowed to vary within observed ranges. Further, C related outputs when using our data-driven parameterization differed from outputs when using the default parameterization by -7.9 - 12.2%. Finally, I utilized TLS point clouds to assess the effect elevated temperature and CO2 concentrations had on P. mariana and L. laricina after the first four years of SPRUCE treatments. I observed that P. mariana growth (aboveground net primary production) had a negative response to temperature initially, but the relationship became less pronounced through time. Conversely, L. laricina had no growth response to temperature initially, but developed a positive relationship through time. The divergent growth responses of P. mariana and L. laricina resulted in no detectable change in aboveground net primary production at the community level. Results from this dissertation help improve how peatland microtopography is represented, and improves understanding of how peatland tree growth will respond to environmental change in the future.


1950 ◽  
Vol 1 (3) ◽  
pp. 231 ◽  
Author(s):  
BW Butler

A new theory is submitted on the origin of the soil formations in the alluvial plains region of southern New South Wales and Victoria embracing the Murray River and tributaries which has been given the name of the Riverine Plain of South-Eastern Australia. The Riverine Plain is delineated and the climate and physiography of the environment are briefly described. The theory postulates the occurrence of a system of prior streams independent of the present stream pattern; from the activity of this system the present soils and land surface were derived. The formations are discussed in terms of sedimentary array, salinity, and degree of leaching. Figures illustrate the ideal sediment pattern of a prior stream formation, a typical alluvial fan, and a simplified map of the region showing prior and present stream systems. A classification of the named soils from local soil surveys is given in the form of 15 sequences of general catenary relationship. The influence of halomorphism in soil development is discussed with the deduction that solonetzous and solodous soils occur generally throughout the region. The age of prior stream activity is set at late Pleistocene to early Recent.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shanshan Zhao ◽  
Wenping He ◽  
Tianyun Dong ◽  
Jie Zhou ◽  
Xiaoqiang Xie ◽  
...  

The daily average land surface air temperature (SAT) simulated by 8 CMIP5 models historical experiments and that from NCEP data during 1960–2005, are used to evaluate the performance of the CMIP5 model based on detrended fluctuation analysis (DFA) method. The DFA results of NCEP data show that SAT in most regions of the world exhibit long-range correlation. The scaling exponents of NCEP SAT show the zonal distribution characteristics of larg in tropics while small in medium and high latitudes. The distribution characteristics of the zonal average scaling exponents of CMCC-CMS, GFDL-ESM2G, IPSL-CM5A-MR are similar to that of NCEP data. From the DFA errors of model-simulated SAT, the performance of IPSL-CM5A-MR is the best among the 8 models throughout the year, the performance of FGOALS-g2 is good in spring and summer, GFDL-ESM2G is the best in autumn, CNRM-CM5 and CMCC-CMS is good in winter. The scaling exponents of model-simulated SAT are closer to that of NCEP data in most areas of the mid-high latitude on the northern hemisphere. However, simulations of SAT in East Asia and Central North American are generally less effective. In spring, most models have better performance in Siberian (SIB), Central Asia (CAS) and Tibetan (TIB). SAT in Northern Europe area are well simulated by most models in summer. In autumn, areas with better performance of most models are Mediterranean, SIB and TIB regions. In winter, SAT in Greenland, SIB and TIB areas are well simulated by most models. Generally speaking, the performance of CMIP5 models for SAT on global continents varies in different seasons and different regions.


2021 ◽  
Vol 18 (6) ◽  
pp. 1917-1939
Author(s):  
Martina Botter ◽  
Matthias Zeeman ◽  
Paolo Burlando ◽  
Simone Fatichi

Abstract. Alpine grasslands sustain local economy by providing fodder for livestock. Intensive fertilization is common to enhance their yields, thus creating negative externalities on water quality that are difficult to evaluate without reliable estimates of nutrient fluxes. We apply a mechanistic ecosystem model, seamlessly integrating land-surface energy balance, soil hydrology, vegetation dynamics, and soil biogeochemistry, aiming at assessing the grassland response to fertilization. We simulate the major water, carbon, nutrient, and energy fluxes of nine grassland plots across the broad European Alpine region. We provide an interdisciplinary model evaluation by confirming its performance against observed variables from different datasets. Subsequently, we apply the model to test the influence of fertilization practices on grassland yields and nitrate (NO3-) losses through leaching under both current and modified climate scenarios. Despite the generally low NO3- concentration in groundwater recharge, the variability across sites is remarkable, which is mostly (but not exclusively) dictated by elevation. In high-Alpine sites, short growing seasons lead to less efficient nitrogen (N) uptake for biomass production. This combined with lower evapotranspiration rates results in higher amounts of drainage and NO3- leaching to groundwater. Scenarios with increased temperature lead to a longer growing season characterized by higher biomass production and, consequently, to a reduction of water leakage and N leaching. While the intersite variability is maintained, climate change impacts are stronger on sites at higher elevations. The local soil hydrology has a crucial role in driving the NO3- use efficiency. The commonly applied fixed threshold limit on fertilizer N input is suboptimal. We suggest that major hydrological and soil property differences across sites should be considered in the delineation of best practices or regulations for management. Using distributed maps informed with key soil and climatic attributes or systematically implementing integrated ecosystem models as shown here can contribute to achieving more sustainable practices.


2013 ◽  
Vol 14 (5) ◽  
pp. 1421-1442 ◽  
Author(s):  
Hyun Il Choi ◽  
Xin-Zhong Liang ◽  
Praveen Kumar

Abstract Most current land surface models used in regional weather and climate studies capture soil-moisture transport in only the vertical direction and are therefore unable to capture the spatial variability of soil moisture and its lateral transport. They also implement simplistic surface runoff estimation from local soil water budget and ignore the role of surface flow depth on the infiltration rate, which may result in significant errors in the terrestrial hydrologic cycle. To address these issues, this study develops and describes a conjunctive surface–subsurface flow (CSSF) model that comprises a 1D diffusion wave model for surface (overland) flow fully interacted with a 3D volume-averaged soil-moisture transport model for subsurface flow. The proposed conjunctive flow model is targeted for mesoscale climate application at relatively large spatial scales and coarse computational grids as compared to the traditional coupled surface–subsurface flow scheme in a typical basin. The CSSF module is substituted for the existing 1D scheme in the common land model (CoLM) and the performance of this hydrologically enhanced version of the CoLM (CoLM+CSSF) is evaluated using a set of offline simulations for catchment-scale basins around the Ohio Valley region. The CoLM+CSSF simulations are explicitly implemented at the same resolution of the 30-km grids as the target regional climate models to avoid downscaling and upscaling exchanges between atmospheric forcings and land responses. The results show that the interaction between surface and subsurface flow significantly improves the stream discharge prediction crucial to the terrestrial water and energy budget.


Sign in / Sign up

Export Citation Format

Share Document