Generalized instream habitat models

2005 ◽  
Vol 62 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Nicolas Lamouroux ◽  
Ian G Jowett

Conventional instream habitat models (e.g., the physical habitat simulation system) predict the impact of regulation on the habitats of freshwater taxa. They link a hydraulic model with microhabitat-suitability models for taxa to predict habitat values at various discharge rates. Their use requires considerable field effort and experience. Recent analyses performed in France suggested that comparable results could be achieved using simplified hydraulic data. We tested this approach for 99 stream reaches and nine aquatic taxa in New Zealand. The resulting generalized habitat models predict habitat values similar to those predicted by conventional models from simplified hydraulic data (depth–discharge and width–discharge relationships, average particle size, and mean annual discharge). As in France, within-reach changes in habitat values were linked to the specific discharge of reaches, while between-reach changes depended mainly on the Froude number at mean annual discharge. The generalized models perform well outside their calibration range. Models previously developed in France perform well in New Zealand. Such generalized models contribute to identifying the key hydraulic variables for freshwater taxa and should facilitate habitat studies worldwide.

Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


2007 ◽  
Vol 121-123 ◽  
pp. 1451-1454
Author(s):  
Jian Feng Chen ◽  
Guo Quan Wang ◽  
Xiao Fei Zeng ◽  
Hong Ying Zhao

Nanocomposites of nanosized-CaCO3/polypropylene-ethylene copolymer (PPE) and nanosized CaCO3/ PPE/ styrene-butadiene-styrene (SBS) were prepared by using two-roll mill and single screw extruder. The average particle size of nanosized CaCO3 was determined to be about 30 nm. By adding nanosized CaCO3 into PPE matrix, the toughness of the matrix improves significantly. At nanosized CaCO3 content of 12 phr (parts per hundred PPE resin by weight), the impact strength of CaCO3/PPE at room temperature reaches 61.6 KJ/m2, which is 3.02 times that of unfilled PPE matrix. In addition, the synergistic toughening effect of nanosized CaCO3 and SBS particles on PPE matrix was investigated.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 942 ◽  
Author(s):  
Hyeongsik Kang ◽  
Byungwoong Choi

This study presents the impact of natural flow patterns on downstream aquatic species habitats in a reach of the Geum River, Korea. The study reach is a 13.4 km long, located downstream of the Yongdam Dam. To assess such an impact, this study performed physical habitat simulations. The River2D model was used for the computation of the flow field and morphology, and the Habitat Suitability Index (HSI) model for the habitat simulation. Three habitat variables—flow depth, velocity, and substrate were used. The Zacco platypus and Baetis fuscatus were selected as the target fish and benthic macro-invertebrate, respectively. Using the building block approach (BBA), the scenarios for modifying dam operations were constructed in the study reach. Scenario 1, scenario 2, and scenario 3 were proposed by using the magnitude–duration concept, base flow allocation concept, and seasonally adjusted minimum flow allocation concept, respectively. Simulation results indicated that the scenarios’ effects significantly increased by about 14.3% for the weighted usable area (WUA). In addition, the morphology change with the restoration of flood events was investigated. It was revealed that the morphology change in the physical habitat simulations further increased by about 13% for the WUA. The change of dam operations through natural flow patterns is more advantageous to aquatic species.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2019 ◽  
Vol 13 (3) ◽  
pp. 234-240
Author(s):  
Elnaz Moslehifard ◽  
Mahmood Robati Anaraki ◽  
Saeed Shirkavand

Background. The current study evaluated the compressive, flexural and impact strengths of heat-cured acrylic resins reinforced by TiO2 nanoparticles (NPs). Methods. TiO2 NPs were provided and characterized using scanning electron microscopy (SEM) to determine their morphology and crystalline structure. For three mechanical tests, 12 acrylic resin groups (n=9), totaling 108 specimens, were prepared using a special mold for each test, with TiO2 nanoparticle contents of 0, 0.5, 1 or 2 wt% in different groups. After curing, the compressive, flexural and impact strengths of the specimens were examined according to ISO 1567. Results. In the SEM and XRD study of TiO2 NPs, anatase was identified as the major crystalline phase followed by rutile (average particle size: 20.4 nm). SEM images showed that the nanocomposite with 1 wt% NPs had a more homogenized blend. 1 wt% TiO2 nanocomposite exhibited a higher, but non-significant, impact strength compared to the controls. ANOVA showed significant differences in the impact and flexural strengths between nanocomposites with various contents of TiO2 NPs. Conclusion. The nanocomposite with 1 wt% TiO2 NPs exhibited fewer micro-pores and micro-cracks in the SEM cross-sections. A non-significant increase was also observed in the impact strength with TiO2 NPs at 1 wt%. Further increase in TiO2 NPs decreased both the impact and flexural strengths. The compressive strength of the heat-cured acrylic resin was not affected by the incorporation of NPs.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 320 ◽  
Author(s):  
Dries Devlaminck ◽  
Paul Van Steenberge ◽  
Marie-Françoise Reyniers ◽  
Dagmar D’hooge

A 5-dimensional Smith-Ewart based model is developed to understand differences for reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization with theoretical agents mimicking cases of slow fragmentation, cross-termination, and ideal exchange while accounting for chain length and monomer conversion dependencies due to diffusional limitations. The focus is on styrene as a monomer, a water soluble initiator, and a macro-RAFT agent to avoid exit/entry of the RAFT leaving group radical. It is shown that with a too low RAFT fragmentation rate coefficient it is generally not afforded to consider zero-one kinetics (for the related intermediate radical type) and that with significant RAFT cross-termination the dead polymer product is dominantly originating from the RAFT intermediate radical. To allow the identification of the nature of the RAFT retardation it is recommended to experimentally investigate in the future the impact of the average particle size (dp) on both the monomer conversion profile and the average polymer properties for a sufficiently broad dp range, ideally including the bulk limit. With decreasing particle size both a slow RAFT fragmentation and a fast RAFT cross-termination result in a stronger segregation and thus rate acceleration. The particle size dependency is different, allowing further differentiation based on the variation of the dispersity and end-group functionality. Significant RAFT cross-termination is specifically associated with a strong dispersity increase at higher average particle sizes. Only with an ideal exchange it is afforded in the modeling to avoid the explicit calculation of the RAFT intermediate concentration evolution.


2020 ◽  
Vol 979 ◽  
pp. 10-15
Author(s):  
K. Sekar ◽  
K. Jayakumar

Hybrid metal matrix composites (MMCs) were prepared with AA 5754 as matrix and B4C (fixed with 1 wt.% and average particle size as 25 μm) and Al2O3 reinforcements (varied from 0.5 to 2 wt. % with the interval of 0.5 and average particle size as 50 nm) using Rheo-squeeze casting process. Microstructure images were taken to observe the uniform distribution of reinforcement particles on the matrix alloy. The tensile strength for AA 5754 with 1 wt.% B4C and 2 wt.% Al2O3 hybrid composite showed higher value compared to base alloy and other composites. The wt. % of Al2O3 in the composite is increased to 2 %, the tensile strength and compressive strength were also increased due to combined Rheo-squeeze casting. AA 5754 reinforced with 1 wt.% B4C and 1.5 wt.% Al2O3 MMC indicated the Impact strength value of 30 Joules which is higher than AA 5754 matrix alloy and other compositions.


2012 ◽  
Vol 27 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Karin Athley ◽  
Lars Granlöf ◽  
Daniel Söderberg ◽  
Mikael Ankerfors ◽  
Göran Ström

Abstract An investigation of the impact of particle size on the mechanical retention of particles in a fibre network has been conducted. The particles used were five sets of quartz particle fractions having fairly narrow particle size distributions with average particle size ranging from a few μm to around 100 μm. The particles were used to model flocculated filler aggregates as part of a larger study of the effect of pre-flocculation on mechanical retention. Pre-flocculation of the filler is a possible strategy to increase the filler content of paper without deterioration of strength properties. A modified laboratory hand sheet former, known as the Rapid Drainage Device (RDD) was used. The major modification consisted of a long pipe that acted as a suction leg, which provides a dewatering vacuum at the same level as on a paper machine. The experimental results showed that mechanical filler retention increased linearly with particle size and grammage of the fibre layer above a critical grammage which depended on particle size. The linear relation was also seen in a pilot scale trial on the FEX pilot-paper machine at Innventia. During this trial fine paper was produced using pre-flocculated filler where the mean particle size of the flocs and fibres was measured in the flow to the headbox. The results from this pilot trial show that mechanical retention is an important part of the total filler retention. Drainage time and therefore drainage resistance increased with the grammage of the fibre layer and amount of quartz particle added. Drainage time, compared at total grammage (i.e. the sum of fibre and quartz particle grammage) was lowest for a fraction of medium-sized particles, with a median size of 35 mm. There was no obvious effect on retention or drainage resistance of a change in the dewatering pressure from 27.5 to 41.5 kPa.


2019 ◽  
Vol 135 ◽  
pp. 02019
Author(s):  
Yuriy Vernigorov ◽  
Valeriy Lebedev ◽  
Natalya Frolova ◽  
Kirill Leletko

The design features of the grinding devices that implement the impact destruction of the ferromagnetic materials particles in a magneto vibrating layer formed in a non-uniform magnetic field are considered. It is shown that when a magnetizable powder is affected by an alternating magnetic field with certain parameters, a magneto vibrating layer is formed, under the conditions of which, a random perturbing factor occurs. It is caused by the dipole particles clusters interactions and provides highefficient finish powder grinding. Methods for producing metal powders, which are distinguished according to the operating principle and to the requirements for the technological properties of the powders obtained, are analyzed. For coarse grinding, jaw, roller and cone crushers and mullers are used; at this, particles of 1-10 mm in size, which are the source material for fine grinding, are obtained. The finish grinding of the material obtained is carried out on the ball rotating, vibrating or planar centrifugal, vortex and hammer mills. The main drawback of these techniques of metal powder grinding is sticking of grinding body residue on the powder particles, which reduces the quality and operational properties of the powder. A relation to calculate the dependence of the fineness number of ferromagnetic materials on the induction gradient of an external variable magnetic field is proposed. The design features of an electromagnetic mill based on a screw drum that, due to the spatial orientation of its walls, ensures an effective movement of powder flows inside it, such as mixing, rotation, oncoming movement, translational motion and simultaneous advancement through the drum are presented. The concept and technological options of grinding powders in an electromagnetic mobile hammer mill are revealed, which enables to obtain a powder of a given particle size distribution with high uniformity. It is established that mills in which a magneto vibrating layer is implemented are more effective than mechanical ones: grinding of ferromagnetic powders in a magneto vibrating layer increases drastically the performance of the grinding process. Changing the parameters of the electromagnetic field, you can set an average particle size and the degree of homogeneity of the powder.


2006 ◽  
Vol 517 ◽  
pp. 272-274 ◽  
Author(s):  
Ismail Zainol ◽  
Mohamad Ibrahim Ahmad ◽  
Fadzil Ayad Zakaria ◽  
Anita Ramli ◽  
Haslan Fadli Ahmad Marzuki ◽  
...  

The cure process and the mechanical properties of liquid polymethylmethacrylate grafted natural rubber (LMG30) modified epoxy have been studied. Addition of LMG30 significantly increased the fracture toughness and the impact strength of the epoxy resin. The fracture toughness increased up to 22 fold (17.3 MNm-3/2) when modified with 5 phr LMG30. The glass transition temperature however, decreases as the rubber content increases. The SEM analysis shows uniform dispersion of rubber particles within the epoxy matrix with average particle size between 0.4 to 0.8 0m in diameter.


Sign in / Sign up

Export Citation Format

Share Document