Long-Term and Short-Term Fluctuations in the Catches of Coastal Pelagic Fisheries Around Japan

1973 ◽  
Vol 30 (12) ◽  
pp. 2361-2367 ◽  
Author(s):  
F. Nagasaki

Although the total landings of coastal pelagic fishes around Japan have been fairly stable for 10 years, the catch of individual species has shown violent fluctuations. The catch of Hokkaido herring and the sardine is decreasing and shows no signs of recovery. The catch of saury has also decreased sharply since 1960, but that of mackerel has increased substantially. There are big yearly fluctuations in the landings of squid, horse-mackerel, and anchovy, but no consistent trend either way has been shown. Apparently the great variations in stock abundance relate to the hydrographic complex in the waters around Japan. As most of the important coastal pelagic fishes spawn and spend their early life in the area of the continental shelf of the southern half of the Japanese islands, the location and the strength of the Kuroshio current play an important role in the ever-changing environmental conditions. Although the causes of these fluctuations are largely unknown, they can be classified as long, intermediate and short-term. The large-scale fluctuation over a long term, as in the case of the Hokkaido herring and the sardine, may possibly be due to evacuation of the main spawning grounds. The intermediate period of fluctuation is caused by the degree of survival of the young. A variety of causes must be responsible for the short-term fluctuation, including survival, for which there is no consistent trend, and the effect of the Kuroshio current on the distribution of the young fish.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 534
Author(s):  
Huogen Wang

The paper proposes an effective continuous gesture recognition method, which includes two modules: segmentation and recognition. In the segmentation module, the video frames are divided into gesture frames and transitional frames by using the information of hand motion and appearance, and continuous gesture sequences are segmented into isolated sequences. In the recognition module, our method exploits the spatiotemporal information embedded in RGB and depth sequences. For the RGB modality, our method adopts Convolutional Long Short-Term Memory Networks to learn long-term spatiotemporal features from short-term spatiotemporal features obtained from a 3D convolutional neural network. For the depth modality, our method converts a sequence into Dynamic Images and Motion Dynamic Images through weighted rank pooling and feed them into Convolutional Neural Networks, respectively. Our method has been evaluated on both ChaLearn LAP Large-scale Continuous Gesture Dataset and Montalbano Gesture Dataset and achieved state-of-the-art performance.


2016 ◽  
Vol 13 (24) ◽  
pp. 6651-6667 ◽  
Author(s):  
Jing Tang ◽  
Guy Schurgers ◽  
Hanna Valolahti ◽  
Patrick Faubert ◽  
Päivi Tiiva ◽  
...  

Abstract. The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999–2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m−2 yr−1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day–year scale, the WRs are a combined effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future.


Author(s):  
Rodrick Wallace

Statistical models based on the asymptotic limit theorems of control and information theories allow formal examination of the essential differences between short-time “tactical” confrontations and a long-term “strategic” conflict dominated by evolutionary process. The world of extended coevolutionary conflict is not the world of sequential “muddling through.” The existential strategic challenge is to take cognitive control of a long-term dynamic in which one may, in fact, be “losing” most short-term confrontations. Winning individual battles can be a relatively direct, if not simple or easy, matter of sufficient local resources, training, and resolve. Winning extended conflicts is not direct, and requires management of subtle coevolutionary phenomena subject to a dismaying punctuated equilibrium more familiar from evolutionary theory than military doctrine. Directed evolution has given us the agricultural base needed for large-scale human organization. Directed coevolution of the inevitable conflicts between the various segments of that organization may be needed for its long-term persistence.


2019 ◽  
Vol 293 (1) ◽  
pp. 123-140
Author(s):  
Marco Gribaudo ◽  
Illés Horváth ◽  
Daniele Manini ◽  
Miklós Telek

Abstract The performance of service units may depend on various randomly changing environmental effects. It is quite often the case that these effects vary on different timescales. In this paper, we consider small and large scale (short and long term) service variability, where the short term variability affects the instantaneous service speed of the service unit and a modulating background Markov chain characterizes the long term effect. The main modelling challenge in this work is that the considered small and long term variation results in randomness along different axes: short term variability along the time axis and long term variability along the work axis. We present a simulation approach and an explicit analytic formula for the service time distribution in the double transform domain that allows for the efficient computation of service time moments. Finally, we compare the simulation results with analytic ones.


2019 ◽  
Vol 22 (4) ◽  
pp. 440-455 ◽  
Author(s):  
Anna Girard ◽  
Marcel Lichters ◽  
Marko Sarstedt ◽  
Dipayan Biswas

Ambient scents are being increasingly used in different service environments. While there is emerging research on the effects of scents, almost nothing is known about the long-term effects of consumers’ repeated exposure to ambient scents in a service environment as prior studies on ambient scents have been lab or field studies examining short-term effects of scent exposure only. Addressing this limitation, we examine the short- and long-term effects of ambient scents. Specifically, we present a conceptual framework for the short- and long-term effects of nonconsciously processed ambient scent in olfactory-rich servicescapes. We empirically test this framework with the help of two large-scale field experiments, conducted in collaboration with a major German railway company, in which consumers were exposed to a pleasant, nonconsciously processed scent. The first experiment demonstrates ambient scent’s positive short-term effects on consumers’ service perceptions. The second experiment—a longitudinal study conducted over a 4-month period—examines scent’s long-term effects on consumers’ reactions and demonstrates that the effects persist even when the scent has been removed from the servicescape.


2020 ◽  
pp. 027836491989662
Author(s):  
Sriram Siva ◽  
Hao Zhang

Perception is one of the several fundamental abilities required by robots, and it also poses significant challenges, especially in real-world field applications. Long-term autonomy introduces additional difficulties to robot perception, including short- and long-term changes of the robot operation environment (e.g., lighting changes). In this article, we propose an innovative human-inspired approach named robot perceptual adaptation (ROPA) that is able to calibrate perception according to the environment context, which enables perceptual adaptation in response to environmental variations. ROPA jointly performs feature learning, sensor fusion, and perception calibration under a unified regularized optimization framework. We also implement a new algorithm to solve the formulated optimization problem, which has a theoretical guarantee to converge to the optimal solution. In addition, we collect a large-scale dataset from physical robots in the field, called perceptual adaptation to environment changes (PEAC), with the aim to benchmark methods for robot adaptation to short-term and long-term, and fast and gradual lighting changes for human detection based upon different feature modalities extracted from color and depth sensors. Utilizing the PEAC dataset, we conduct extensive experiments in the application of human recognition and following in various scenarios to evaluate ROPA. Experimental results have validated that the ROPA approach obtains promising performance in terms of accuracy and efficiency, and effectively adapts robot perception to address short-term and long-term lighting changes in human detection and following applications.


1966 ◽  
Vol 3 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Willy Dyck

Measurements of the 14C concentration in a Douglas fir from Vancouver Island indicate a maximum variation of 44‰, during the past 1 100 years. The magnitude and trend of these variations are similar to those observed by de Vries (1958) in oak from Germany and by Willis et al. (1960) in sequoias from California, confirming earlier observations that atmospheric mixing of CO2 takes place rapidly on a large scale.14C measurements of successive annual growth rings from the piths of two firs (346 years and 1 142 years old) show no variations beyond those attributable to the statistical counting error of ± 6‰. Thus, cyclic variations in sunspot activity and (or) climate, if present during these intervals, did not affect the 14C concentration in the biosphere appreciably.A mechanism, based on a climate-sensitive carbon pumping rate of the biosphere coupled with the temperature-dependent oceanic CO2 content is postulated to explain, qualitatively, the observed short-term (150 years or less) and long-term (1 000 years or more) 14C variations in the land biosphere. Short-term fluctuations are directly proportional to temperature because variations in the carbon fixation rate lead to a pulsating CO2 content of the atmosphere. Long-term changes are inversely proportional to temperature because large quantities of carbon, normally stored in deeper regions of the ocean, are exchanged between biosphere and hydrosphere.


2006 ◽  
Vol 6 (1) ◽  
pp. 1-54 ◽  
Author(s):  
Takeshi Kimura ◽  
David H. Small

In this paper, we empirically examine the portfolio-rebalancing effects stemming from the policy of “quantitative monetary easing” recently undertaken by the Bank of Japan when the nominal short-term interest rate was virtually at zero. Portfolio-rebalancing effects resulting from the open market purchase of long-term government bonds under this policy have been statistically significant. Our results also show that the portfolio-rebalancing effects were beneficial in that they reduced risk premiums on assets with counter-cyclical returns, such as government and high-grade corporate bonds. But, they may have generated the adverse effects of increasing risk premiums on assets with pro-cyclical returns, such as equities and low-grade corporate bonds. These results are consistent with a CAPM framework in which business-cycle risk importantly affects risk premiums. Our estimates capture only some of the effects of quantitative easing and thus do not imply that the complete set of effects were adverse on net for Japan’s economy. However, our analysis counsels caution in accepting the view that, ceteris paribus, a massive large-scale purchase of long-term government bonds by a central bank provides unambiguously positive net benefits to financial markets at zero short-term interest rates.


2012 ◽  
Vol 279 (1746) ◽  
pp. 4322-4333 ◽  
Author(s):  
David W. Schindler

The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades.


2011 ◽  
Vol 75 (2) ◽  
pp. 378-384 ◽  
Author(s):  
Ivar Berthling ◽  
Bernd Etzelmüller

AbstractRecent accounts suggest that periglacial processes are unimportant for large-scale landscape evolution and that true large-scale periglacial landscapes are rare or non-existent. The lack of a large-scale topographical fingerprint due to periglacial processes may be considered of little relevance, as linear process–landscape development relationships rarely can be substantiated. Instead, periglacial landscapes may be classified in terms of specific landform associations. We propose “cryo-conditioning”, defined as the interaction of cryotic surface and subsurface thermal regimes and geomorphic processes, as an overarching concept linking landform and landscape evolution in cold regions. By focusing on the controls on processes, this concept circumvents scaling problems in interpreting long-term landscape evolution derived from short-term processes. It also contributes to an unambiguous conceptualization of periglacial geomorphology. We propose that the development of several key elements in the Norwegian geomorphic landscape can be explained in terms of cryo-conditioning.


Sign in / Sign up

Export Citation Format

Share Document