scholarly journals Identification of RAPD markers linked to A and B genome sequences in Musa L.

Genome ◽  
2000 ◽  
Vol 43 (5) ◽  
pp. 763-767 ◽  
Author(s):  
M Pillay ◽  
D C Nwakanma ◽  
A Tenkouano

Plantains and bananas (Musa spp. sect. eumusa) originated from intra- and interspecific hybridization between two wild diploid species, M. acuminata Colla. and M. balbisiana Colla., which contributed the A and B genomes, respectively. Polyploidy and hybridization have given rise to a number of diploid, triploid, and tetraploid clones with different permutations of the A and B genomes. Thus, dessert and highland bananas are classified mainly as AAA, plantains are AAB, and cooking bananas are ABB. Classification of Musa into genomic groups has been based on morphological characteristics. This study aimed to identify RAPD (random amplified polymorphic DNA) markers for the A and B genomes. Eighty 10-mer Operon primers were used to amplify DNA from M. acuminata subsp. burmannicoides clone 'Calcutta 4' (AA genomes) and M. balbisiana clone 'Honduras' (BB genomes). Three primers (A17, A18, and D10) that produced unique genome-specific fragments in the two species were identified. These primers were tested in a sample of 40 genotypes representing various genome combinations. The RAPD markers were able to elucidate the genome composition of all the genotypes. The results showed that RAPD analysis can provide a quick and reliable system for genome identification in Musa that could facilitate genome characterization and manipulations in breeding lines.Key words: banana and plantain, A and B genomes, genomic groups, RAPD markers.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 529f-529
Author(s):  
J.I. Hormaza ◽  
L. Dollo ◽  
V.S. Polito

The Random Amplified Polymorphic DNA (RAPD) technique was used to characterize 15 cultivars of pistachio (Pistacia vera L.). A total of 37 polymorphic markers were considered in this study. Each cultivar exhibited a unique molecular phenotype and, as a consequence, can be uniquely fingerprinted. A similarity and cluster analysis based on the amplified fragments produced two distinct groups which are consistent with the known geographical origin of the cultivars. Our results suggest that RAPD analysis can provide a new alternative for cultivar identification and classification of pistachio.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1230-1236 ◽  
Author(s):  
Jun-Zhi Wei ◽  
Richard R.-C. Wang

Eight different genomes (E, H, I, P, R, St, W, and Ns) represented by 22 diploid species of the tribe Triticeae were analyzed using the random amplified polymorphic DNA (RAPD) technique. The genome relationships were obtained based on 371 RAPD fragments produced with 30 primers. The four species of the genus Psathyrostachys (having various Ns genomes) were closely related. The genomes Ee and Eb had a similarly close relationship and were distinct from all other genomes analyzed. Genomes P, R, and St were grouped in one cluster and genomes H and I in another. Genome W had a distant relationship with all other genomes. These results agree with the conclusions from studies of chromosome pairing and isozyme and DNA sequence analyses. Twenty-nine and 11 RAPD fragments are considered to be genome- and species-specific markers, respectively. One to six genome-specific markers were identified for each genome. These RAPD markers are useful in studies of genome evolution, analysis of genome composition, and genome identification.Key words: Triticeae, perennial, diploid, genome, RAPD, genome-specific markers.


2019 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
O-Chul Kwon ◽  
Chang-Soo Lee ◽  
Young-Jin Park

In this study we identified single nucleotide polymorphism (SNP) and sequence characteristic amplification region (SCAR) markers for specific identification of antler-shaped Ganoderma lucidum strains. When the partial mitochondrial SSU rDNA gene sequence of various antler- and kidney-shaped G. lucidum strains were analyzed and aligned, an SNP was found only in the antler-shaped G. lucidum strain at position 456 bp. In addition, this SNP of antler-shaped strains was digested by HinfI restriction enzyme. We further analyzed the polymorphism of various G. lucidum strains by random amplified polymorphic DNA (RAPD) analysis. In RAPD analysis, we isolated and sequenced a fragment, specific for antler-shaped G. lucidum strains. Based on this specific fragment sequence, two sets of specific primer pairs for antler-shaped G. lucidum strains were designed. PCR analysis revealed that two specific bands were observed only from antler-shaped strains. These two molecular markers will be helpful for identification of morphological characteristics of G. lucidum.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 665-672 ◽  
Author(s):  
Zhi-Jun Cheng ◽  
Minoru Murata

AbstractFrom a wild diploid species that is a relative of wheat, Aegilops speltoides, a 301-bp repeat containing 16 copies of a CAA microsatellite was isolated. Southern blot and fluorescence in situ hybridization revealed that ∼250 bp of the sequence is tandemly arrayed at the centromere regions of A- and B-genome chromosomes of common wheat and rye chromosomes. Although the DNA sequence of this 250-bp repeat showed no notable homology in the databases, the flanking or intervening sequences between the repeats showed high homologies (>82%) to two separate sequences of the gag gene and its upstream region in cereba, a Ty3/gypsy-like retroelement of Hordeum vulgare. Since the amino acid sequence deduced from the 250 bp with seven CAAs showed some similarity (∼53%) to that of the gag gene, we concluded that the 250-bp repeats had also originated from the cereba-like retroelements in diploid wheat such as Ae. speltoides and had formed tandem arrays, whereas the 300-bp repeats were dispersed as a part of cereba-like retroelements. This suggests that some tandem repeats localized at the centromeric regions of cereals and other plant species originated from parts of retrotransposons.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 289
Author(s):  
Minju Kim ◽  
Jun-Cheol Moon ◽  
Songmun Kim ◽  
Kandhasamy Sowndhararajan

Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars. The RAPD analysis demonstrated that all thyme cultivars showed characteristic RAPD patterns that allowed their identification. In total, 133 bands were obtained using 16 primers, and 124 bands were polymorphic, corresponding to 93.2% polymorphism. Cluster analysis of RAPD markers established the presence of clear separation from nine thyme cultivars. The highest dissimilarity and similarity coefficient of the RAPD markers were 0.58 and 0.98, respectively. According to the RAPD patterns, the nine thyme cultivars could be divided into two major clusters. Among three Korean cultivars, the Wolchul and Odae cultivars were placed into the same cluster, but they did not show identical clustering with their essential oil compositions. The findings of the present study suggest that RAPD analysis can be a useful tool for marker-assisted identification of T. quinquecostatus from other Thymus species.


Author(s):  
Indu Rialch ◽  
Rama Kalia ◽  
H. K. Chaudhary ◽  
B. Kumar ◽  
J. C. Bhandari ◽  
...  

Ten morpho-agronomic traits and 80 random amplified polymorphic DNA (RAPD) molecular markers were used to survey genetic diversity in 25 chickpea genotypes. Analysis of variance revealed significant variability among different genotypes for morpho-metric traits. The cluster analysis done using morpho-metric traits grouped 25 genotypes into seven and six clusters in Environment I (Env. I) and Environment II (Env. II), respectively. Three genotypes viz., ICCV-96904, HPG-17, ICCV-95503 and L-HR-1 belonging to diverse clusters were identified divergent and may use in heterosis breeding programme. Of 80 random RAPD markers, 25 were found polymorphic. Three major clusters were identified using 25 polymorphic RAPD markers. The genetic similarity coefficient among genotypes ranged from 0.57 to 0.91. The average polymorphic information content (PIC) for 25 RAPD markers ranges from 0.12 to 0.40. D2-statistic, RAPD analysis and study of genotypes performance revealed sufficient genetic diversity among chickpea genotypes which would be useful in future breeding programme.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 809-816 ◽  
Author(s):  
W. J. Kaiser ◽  
B.-C. Wang ◽  
J. D. Rogers

Isolates of Ascochyta fabae from faba bean (Vicia faba) and A. lentis from lentil (Lens culinaris) collected from different countries were used in this study. The Didymella teleomorph (sexual state) of each fungus was induced to develop and mature on inoculated sterile lentil stems. Both fungi were heterothallic, with two mating types, designated MAT1-1 and MAT1-2. When certain isolates of A. fabae and A. lentis were crossed, hybrid pseudothecia developed. Growth, sporulation, colony appearance, morphology, and pathogenicity of the hybrid progeny frequently differed greatly from the parent isolates. Inoculations with single-ascospore progeny from matings among compatible isolates of A. fabae caused disease in faba bean but not in lentil; inoculations with single-ascospore progeny from matings among compatible isolates of A. lentis incited disease in lentil but not in faba bean. Inoculations with single-ascospore progeny from crosses between faba bean and lentil isolates did not induce disease in either host. Asci from crosses between A. fabae and A. lentis mostly contained fewer than eight ascospores that were, on average, larger than those from eight-spored asci. Matings among certain isolates of A. fabae resulted in production of pseudothecia with ascospores considerably larger than is typical for D. fabae. Random amplified polymorphic DNA (RAPD) banding patterns of Ascochyta isolates from faba bean and lentil are clearly different, and banding patterns from hybrid progeny from crosses between A. fabae and A. lentis confirmed hybridity. RAPD markers proved useful in supporting identifications of ascospore isolates from faba bean to known Ascochyta species. Dendrogram analysis indicated similarity between the two fungal species was low. The pathogenicity tests, morphological characteristics, and RAPD markers indicate that A. fabae and A. lentis represent distinct taxa. D. lentis, with its anamorph, A. lentis, is proposed as a new species that is distinct from D. fabae, with its anamorph, A. fabae.


1998 ◽  
Vol 46 (1) ◽  
pp. 143
Author(s):  
Agnieszka M. Poplawski ◽  
John A. G. Irwin ◽  
John M. Manners

Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype- and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.


2001 ◽  
Vol 126 (1) ◽  
pp. 64-71 ◽  
Author(s):  
A. Belaj ◽  
I. Trujillo ◽  
R. de la Rosa ◽  
L. Rallo ◽  
M.J. Giménez

Random amplified polymorphic DNA (RAPD) analysis was performed on the main Mediterranean cultivars of olive (Olea europaea L.) from the Germplasm Bank of the Centro de Investigación y Formación Agraria “Alameda del Obispo” in Cordoba, Spain. One hundred and ninety reproducible amplification fragments were identified using 46 random primers followed by agarose gel electrophoresis. Some 63.2% of the amplification products were polymorphic, with an average of 2.6 RAPD markers obtained for each primer. The combination of polymorphic markers resulted in 244 banding patterns. The high degree of polymorphism detected made identification of all the cultivars (51) possible by combining the RAPD banding patterns of just only four primers: OPA-01, OPK-08, OPX-01, and OPX-03. Cultivar-specific RAPD markers and banding patterns were also found. A dendrogram based on unweighted pair-group method cluster analysis was constructed using a similarity matrix derived from the RAPD amplification products generated by the 46 primers. Three major groups of cultivars could be distinguished by RAPD analysis: 1) cultivars from east and northeast Spain, 2) Turkish, Syrian, and Tunisian cultivars, and 3) the majority of common olive cultivars in Spain. The dendrogram thus showed a good correlation between the banding patterns of olive cultivars and their geographic origin. A higher level of polymorphism was observed when polyacrylamide gel electrophoresis was used to separate the amplification products. Thus, adequate use of RAPD technology offers a valuable tool to distinguish between olive cultivars.


Sign in / Sign up

Export Citation Format

Share Document