Eat, run, and…shiver? From the exercise – diet and energy balance symposium at CSEP 2005

2007 ◽  
Vol 32 (3) ◽  
pp. 503-504
Author(s):  
Éric Doucet

This short introduction includes a brief description of papers that were prepared following the “Symposium on Exercise – Diet and Energy Balance”, which was presented at the Canadian Society for Exercise Physiology annual meeting in the autumn of 2005. Briefly, these three papers discuss findings related to (i) the emerging role of exercise in the treatment of obesity and its co-morbidities, (ii) the role of novel proteins secreted by fat, and (iii) the control of appetite and food intake after successful weight loss.

2006 ◽  
Vol 88 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Joanne E. Cecil ◽  
Peter Watt ◽  
Colin N. Palmer ◽  
Marion Hetherington

2019 ◽  
Vol 78 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Nuno Casanova ◽  
Kristine Beaulieu ◽  
Graham Finlayson ◽  
Mark Hopkins

This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3101-3109 ◽  
Author(s):  
Andrea Peier ◽  
Jennifer Kosinski ◽  
Kimberly Cox-York ◽  
Ying Qian ◽  
Kunal Desai ◽  
...  

Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2−/−) mice. Nmur2−/− mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2−/− mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2−/− mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2−/− mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.


2014 ◽  
Vol 306 (11) ◽  
pp. E1284-E1291 ◽  
Author(s):  
Sayaka Akieda-Asai ◽  
Paul-Emile Poleni ◽  
Yukari Date

CCK and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important for elucidating the mechanisms by which energy balance is maintained. We found here that coadministration of subthreshold CCK and leptin, which individually have no effect on feeding, dramatically reduced food intake in rats. Phosphorylation of AMP-activated protein kinase (AMPK) in the hypothalamus significantly decreased after coinjection of CCK and leptin. In addition, coadministration of these hormones significantly increased mRNA levels of anorectic cocaine- and amphetamine-regulated transcript (CART) and thyrotropin-releasing hormone (TRH) in the hypothalamus. The interactive effect of CCK and leptin on food intake was abolished by intracerebroventricular preadministration of the AMPK activator AICAR or anti-CART/anti-TRH antibodies. These findings indicate that coinjection of CCK and leptin reduces food intake via reduced AMPK phosphorylation and increased CART/TRH in the hypothalamus. Furthermore, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of CCK and leptin to reduce food intake. Food intake reduction induced by coinjection of CCK and leptin was blocked in midbrain-transected rats. Therefore, the neural pathway from hindbrain to hypothalamus plays an important role in transmitting the anorectic signals provided by coinjection of CCK and leptin. Our findings give further insight into the mechanisms of feeding and energy balance.


2007 ◽  
Vol 192 (1) ◽  
pp. 3-15 ◽  
Author(s):  
David A Bechtold ◽  
Simon M Luckman

In the three decades since FMRFamide was isolated from the clam Macrocallista nimbosa, the list of RFamide peptides has been steadily growing. These peptides occur widely across the animal kingdom, including five groups of RFamide peptides identified in mammals. Although there is tremendous diversity in structure and biological activity in the RFamides, the involvement of these peptides in the regulation of energy balance and feeding behaviour appears consistently through evolution. Even so, questions remain as to whether feeding-related actions represent a primary function of the RFamides, especially within mammals. However, as we will discuss here, the study of RFamide function is rapidly expanding and with it so is our understanding of how these peptides can influence food intake directly as well as related aspects of feeding behaviour and energy expenditure.


2016 ◽  
Vol 48 (6) ◽  
pp. 1640-1657 ◽  
Author(s):  
Ari Shechter

Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.The goal of this systematic review is to explore if and how CPAP affects the behaviour and/or metabolism involved in regulating energy balance.CPAP appears to correct for a hormonal profile characterised by abnormally high leptin and ghrelin levels in OSA, by reducing the circulating levels of each. This is expected to reduce excess food intake. However, reliable measures of food intake are lacking, and not yet sufficient to make conclusions. Although studies are limited and inconsistent, CPAP may alter energy metabolism, with reports of reductions in resting metabolic rate or sleeping metabolic rate. CPAP appears to not have an appreciable effect on altering physical activity levels. More work is needed to characterise how CPAP affects energy balance regulation.It is clear that promoting CPAP in conjunction with other weight loss approaches should be used to encourage optimal outcomes in OSA patients.


2015 ◽  
Vol 1 (3) ◽  
pp. 1-14
Author(s):  
Volker Schusdziarra ◽  
Margit Hausmann ◽  
Raphaela Prester ◽  
Stefan Wagenpfeil ◽  
Jürgen W. Bauer ◽  
...  

2020 ◽  
Vol 30 (8) ◽  
pp. 2913-2919
Author(s):  
Bianca M. Leca ◽  
Uzma Khan ◽  
Jenny Abraham ◽  
Louise Halder ◽  
Emma Shuttlewood ◽  
...  

Abstract Background Obesity is a chronic relapsing-remitting disease and a global pandemic, being associated with multiple comorbidities. Laparoscopic adjustable gastric banding (LAGB) is one of the safest surgical procedures used for the treatment of obesity, and even though its popularity has been decreasing over time, it still remains an option for a certain group of patients, producing considerable weight loss and improvement in obesity-associated comorbidities. Methods The aim of this study was to evaluate the impact of weight loss following LAGB on obesity-associated comorbidities, and to identify factors that could predict better response to surgery, and patient sub-groups exhibiting greatest benefit. A total of 99 severely obese patients (81.2% women, mean age 44.19 ± 10.94 years, mean body mass index (BMI) 51.84 ± 8.77 kg/m2) underwent LAGB in a single institution. Results obtained 1, 2, and 5 years postoperatively were compared with the pre-operative values using SPPS software version 20. Results A significant drop in BMI was recorded throughout the follow-up period, as well as in A1c and triglycerides, with greatest improvement seen 2 years after surgery (51.8 ± 8.7 kg/m2 vs 42.3 ± 9.2 kg/m2, p < 0.05, 55.5 ± 19.1 mmol/mol vs 45.8 ± 13.7 mmol/mol, p < 0.05, and 2.2 ± 1.7 mmol/l vs 1.5 ± 0.6 mmol/l). Better outcomes were seen in younger patients, with lower duration of diabetes before surgery, and lower pre-operative systolic blood pressure. Conclusions Younger age, lower degree of obesity, and lower severity of comorbidities at the time of surgery can be important predictors of successful weight loss, making this group of patients the ideal candidates for LAGB.


2018 ◽  
Vol 96 (12) ◽  
pp. 1301-1307 ◽  
Author(s):  
Shiba Yousefvand ◽  
Farshid Hamidi ◽  
Morteza Zendehdel ◽  
Abbas Parham

Neuropeptide Y (NPY) plays a mediatory role in cerebral insulin function by maintaining energy balance. The current study was designed to determine the role of insulin in food intake and its interaction with NPY receptors in 8 experiments using broiler cockerels (4 treatment groups per experiment, except for experiment 8). Chicks received control solution or 2.5, 5, or 10 ng of insulin in experiment 1 and control solution or 1.25, 2.5, or 5 μg of receptor antagonists B5063, SF22, or SML0891 in experiments 2, 3, and 4 through intracerebroventricular (ICV) injection, respectively. In experiments 5, 6, and 7, chicks received ICV injection of B5063, SF22, SML0891, or co-injection of an antagonist + insulin, control solution, and insulin. In experiment 8, blood glucose was measured. Insulin, B5063, and SML0891 decreased food intake, while SF22 led to an increase in food intake. The hypophagic effect of insulin was also reinforced by injection of B560, but ICV injection of SF22 destroyed this hypophagic effect of insulin and increased food intake (p < 0.05). However, SML0891 had no effect on decreased food intake induced by insulin (p > 0.05). At 30 min postinjection, blood sugar in the control group was higher than that in the insulin group (p < 0.05). Therefore, the NPY1 and NPY2 receptors mediate the hypophagic effect of insulin in broiler cockerels.


Sign in / Sign up

Export Citation Format

Share Document