scholarly journals Vitamin and mineral supplementation effect on muscular activity and cycling efficiency in master athletes

2010 ◽  
Vol 35 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Julien Louis ◽  
Christophe Hausswirth ◽  
François Bieuzen ◽  
Jeanick Brisswalter

The influence of vitamin and mineral complex supplementation on muscular activity and cycling efficiency was examined in elderly endurance-trained master athletes during a heavy cycling trial. Master athletes were randomly assigned in a double-blind process to 1 of 2 treatment groups: antioxidant supplementation (n = 8: As group) or placebo (n = 8: Pl group) for 21 days. After that time, each subject had to perform a 10-min session of cycling on a cycloergometer at a heavy constant intensity. Twenty-four to 48 h after this session, subjects performed an isometric maximal voluntary contraction before and immediately after a fatiguing strength training (leg press exercise) and the same 10-min cycling test after fatigue. Isometric maximal voluntary force (MVF) of knee extensors was assessed before and after fatigue. Electromyographic (EMG) activity of the vastus medialis, the vastus lateralis (VL), and the biceps femoris was recorded with surface EMG. The knee-extensors MVF after the fatiguing exercise was reduced in similar proportions for both groups (As, –10.9%; Pl, –11.3%, p < 0.05). This MVF loss was associated with a significant reduction in EMG frequency parameters for both groups, with a lower decrease for the As group. Muscular activity and cycling efficiency during the cycling bouts were affected by the treatment. Cycling efficiency decreased significantly and the oxygen uptake slow component was higher after the fatiguing exercise for both groups. Furthermore, a decrease in cycling efficiency was associated with an increase in VL activity. However, these changes were significantly lower for the As group. The results of the present study indicate an overall positive effect of vitamin and mineral complex supplementation on cycling efficiency after fatigue, in the endurance-trained elderly.

1998 ◽  
Vol 85 (3) ◽  
pp. 927-934 ◽  
Author(s):  
Li Li ◽  
Graham E. Caldwell

The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.


2020 ◽  
Vol 100 (12) ◽  
pp. 2134-2143
Author(s):  
Lance M Bollinger ◽  
Amanda L Ransom

Abstract Objective Obesity reduces voluntary recruitment of quadriceps during single-joint exercises, but the effects of obesity on quadriceps femoris muscle activation during dynamic daily living tasks, such as sit-to-stand (STS), are largely unknown. The purpose of this study was to determine how obesity affects quadriceps muscle recruitment during STS. Methods In this cross-sectional study, 10 women who were lean and 17 women who were obese completed STS from a chair with arms crossed over the chest. Three-dimensional motion analysis was used to define 3 distinct phases (I–III) of the STS cycle. The electromyographic (EMG) activity of the vastus medialis, vastus lateralis, and semitendinosus was measured. Results STS duration was greater (3.02 [SD = 0.75] seconds vs 1.67 [SD = 0.28] seconds) and peak trunk flexion angle was lower (28.9 degrees [SD = 10.4 degrees] vs 35.8 degrees [SD = 10.1 degrees]) in the women who were obese than in the women who were lean. The mean EMG activity of the knee extensors increased from phase I to phase II in both groups; however, the mean EMG activities of both the vastus medialis (32.1% [SD = 16.6%] vs 47.3% [SD = 19.6%] maximal voluntary isometric contraction) and the vastus lateralis (31.8% [SD = 19.4%] vs 47.5% [SD = 19.6%] maximal voluntary isometric contraction) were significantly lower during phase II in the women who were obese. The mean EMG activity of the semitendinosus increased throughout STS but was not significantly different between the 2 groups. Coactivation of the semitendinosus and knee extensors tended to be greater in the women who were obese but failed to reach statistical significance. Conclusions Knee extensor EMG amplitude was reduced in women who were obese during STS, despite reduced trunk flexion. Impact Reduced knee extensor recruitment during STS in obesity may redistribute forces needed to complete this task to other joints. Functional movement training may help improve knee extensor recruitment during STS in people who are obese. Lay Summary People with obesity often have low quadriceps muscle strength and impaired mobility during daily activities. This study shows that women who are obese have lower voluntary recruitment of quadriceps when rising from a chair than women who are lean do, which could increase workload on hip or ankle muscles during this important daily task. Quadriceps strengthening exercises might improve the ability to rise from sitting to standing.


2018 ◽  
Vol 43 (5) ◽  
pp. 427-436 ◽  
Author(s):  
Robin Souron ◽  
Thibault Besson ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study investigated the effects of a 4-week local vibration training (LVT) on the function of the knee extensors and corticospinal properties in healthy young and older subjects. Seventeen subjects (9 young and 8 older) performed 3 testing sessions: before (PRE1) and after (PRE2) a 4-week resting period to control the repeatability of the data as well as after the LVT (POST). Jump performance, maximal voluntary contraction (MVC) and electromyographic (EMG) activity on vastus lateralis and rectus femoris muscles were assessed. Single-pulse transcranial magnetic stimulation (TMS) allowed evaluation of cortical voluntary activation (VATMS), motor evoked potential (MEP) area, and silent period (SP) duration. All training adaptations were similar between young and older subjects (p > 0.05) and the following results reflect the pooled sample of subjects. MVC (+11.9% ± 8.0%, p < 0.001) and VATMS (+3.6% ± 5.2%, p = 0.004) were significantly increased at POST compared with PRE2. Maximal vastus lateralis EMG was significantly increased at POST (+21.9% ± 33.7%, p = 0.03). No changes were reported for MEPs on both muscles (p > 0.05). SPs recorded during maximal and submaximal contractions decreased in both muscles at POST (p < 0.05). Vertical jump performance was increased at POST (p < 0.05). LVT seems as effective in young as in older subjects to improve maximal functional capacities through neural modulations occurring at least partly at the supra-spinal level. Local vibration may be used as an efficient alternative training method to improve muscular performance in both healthy young and older subjects.


1993 ◽  
Vol 74 (1) ◽  
pp. 170-175 ◽  
Author(s):  
J. A. Psek ◽  
E. Cafarelli

Coactivation is antagonist muscle activity that occurs during voluntary contraction. Recently, we showed that the extent of coactivity in the knee flexors decreases after a short period of resistance training of the knee extensors (8). The purpose of the present experiment was to study the time course of coactivation in the knee flexors during fatigue of the knee extensors. Ten male subjects performed repeated submaximal static leg extensions in a low-intensity long-duration and a high-intensity short-duration fatigue protocol until they could no longer produce the required force [time limit of endurance (Tlim)]. Maximal voluntary contraction (MVC), submaximal force, and surface electromyographic (EMG) activity were measured periodically. Vastus lateralis EMG increased progressively during fatigue of the extensor muscles (P < 0.05), resulting in a 38% change from control at Tlim. Biceps femoris EMG, which was our measure of coactivation, also increased by approximately 60% at Tlim in each protocol (P < 0.05). These observations lead us to conclude that a small but significant force loss during repeated static contractions to Tlim is due to an increase in antagonist activity. Moreover, the close correlation between the antagonist and agonist EMG supports the notion of a "common drive" to both motoneuron pools (10).


2005 ◽  
Vol 98 (3) ◽  
pp. 810-816 ◽  
Author(s):  
R. D. Kooistra ◽  
C. J. de Ruiter ◽  
A. de Haan

We investigated the role of central activation in muscle length-dependent endurance. Central activation ratio (CAR) and rectified surface electromyogram (EMG) were studied during fatigue of isometric contractions of the knee extensors at 30 and 90° knee angles (full extension = 0°). Subjects ( n = 8) were tested on a custom-built ergometer. Maximal voluntary isometric knee extension with supramaximal superimposed burst stimulation (three 100-μs pulses; 300 Hz) was performed to assess CAR and maximal torque capacity (MTC). Surface EMG signals were obtained from vastus lateralis and rectus femoris muscles. At each angle, intermittent (15 s on 6 s off) isometric exercise at 50% MTC with superimposed stimulation was performed to exhaustion. During the fatigue task, a sphygmomanometer cuff around the upper thigh ensured full occlusion (400 mmHg) of the blood supply to the knee extensors. At least 2 days separated fatigue tests. MTC was not different between knee angles (30°: 229.6 ± 39.3 N·m vs. 90°: 215.7 ± 13.2 N·m). Endurance times, however, were significantly longer ( P < 0.05) at 30 vs. 90° (87.8 ± 18.7 vs. 54.9 ± 12.1 s, respectively) despite the CAR not differing between angles at torque failure (30°: 0.95 ± 0.05 vs. 90°: 0.96 ± 0.03) and full occlusion of blood supply to the knee extensors. Furthermore, rectified surface EMG values of the vastus lateralis (normalized to prefatigue maximum) were also similar at torque failure (30°: 56.5 ± 12.5% vs. 90°: 58.3 ± 15.2%), whereas rectus femoris EMG activity was lower at 30° (44.3 ± 12.4%) vs. 90° (69.5 ± 25.3%). We conclude that differences in endurance at different knee angles do not find their origin in differences in central activation and blood flow but may be a consequence of muscle length-related differences in metabolic cost.


2000 ◽  
Vol 25 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Anthony J. Bull ◽  
Terry J. Housh ◽  
Glen O. Johnson ◽  
Sharon R. Perry

The purpose of the present study was to determine the electromyographic (EMG) and mechanomyographic (MMG) responses to cycle ergometry at critical power (CP). Seven moderately active males (25 ± 3 years) completed a 60-min trial at their CP estimated from a nonlinear, 3 parameter regression model. EMG and MMG amplitudes were recorded from the vastus lateralis during 60-min continuous rides at CP. The mean CP was 175 ± 25 W, which represented 56 ± 5% of the subjects' peak power outputs. The results indicated that the slope coefficient for the EMG amplitude versus time relationship was not significantly different from zero; however, MMG amplitude decreased significantly over the 60 min. This dissociation between the electrical (EMG) and mechanical (MMG) aspects of muscular activity during cycle ergometry may be due to neuromuscular changes associated with "muscle wisdom" or changes in muscular compliance. Key words: cycle ergometry, fatigue, muscle wisdom, [Formula: see text] slow component


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2120 ◽  
Author(s):  
Alejandro F. San Juan ◽  
Álvaro López-Samanes ◽  
Pablo Jodra ◽  
Pedro L. Valenzuela ◽  
Javier Rueda ◽  
...  

Background: this study examined the effects of caffeine supplementation on anaerobic performance, neuromuscular efficiency and upper and lower extremities fatigue in Olympic-level boxers. Methods: Eight male athletes, members of the Spanish National Olympic Team, were enrolled in the study. In a randomized double-blind, placebo-controlled, counterbalanced, crossover design, the athletes completed 2 test sessions after the intake of caffeine (6 mg·kg−1) or placebo. Sessions involved initial measures of lactate, handgrip and countermovement jump (CMJ) performance, followed by a 30-seconds Wingate test, and then final measures of the previous variables. During the sessions, electromiography (EMG) data were recorded on the gluteus maximus, biceps femoris, vastus lateralis, gastrocnemius lateral head and tibialis anterior. Results: caffeine enhanced peak power (6.27%, p < 0.01; Effect Size (ES) = 1.26), mean power (5.21%; p < 0.01; ES = 1.29) and reduced the time needed to reach peak power (−9.91%, p < 0.01; ES = 0.58) in the Wingate test, improved jump height in the CMJ (+2.4 cm, p < 0.01), and improved neuromuscular efficiency at peak power in the vastus lateralis (ES = 1.01) and gluteus maximus (ES = 0.89), and mean power in the vastus lateralis (ES = 0.95) and tibialis anterior (ES = 0.83). Conclusions: in these Olympic-level boxers, caffeine supplementation improved anaerobic performance without affecting EMG activity and fatigue levels in the lower limbs. Further benefits observed were enhanced neuromuscular efficiency in some muscles and improved reaction speed.


2016 ◽  
Vol 28 (3) ◽  
pp. 364-373 ◽  
Author(s):  
Lothar Stein ◽  
Constanze Pacht ◽  
Sibylle Junge ◽  
Tobias S. Kaeding ◽  
Momme Kück ◽  
...  

Purpose:Defects in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) cause CF. Absence of the CFTR may result in skeletal muscle dysfunction. Here, we tested skeletal muscle function in male adolescent patients with CF.Methods:Ten CF and 10 control participants (age: 16.8 ± 0.6 years) performed 7 repetitive sets of maximum voluntary contractions (MVCs) and underwent an isometric fatigue test of the knee extensors. Electromyography (EMG) activity was recorded from the m. vastus lateralis (VL) and m. vastus medialis (VM).Results:In CF, the MVC torque was lower and correlated with the predicted forced expiratory volume in one second (r = .73, p = .012, n = 10). The M-wave in the VL was shorter in CF than in controls (18.6 ± 0.5 vs. 20.3 ± 0.5 ms, p < .028). In the VM, both the M-wave (4.96 ± 0.61 vs. 7.97 ± 0.60 mV, p = .001) and the EMG (0.29 ± 0.04 vs. 0.47 ± 0.04 mV, p = .004) amplitudes were smaller in CF.Conclusion:The differences in the VL and VM EMG signals between the groups indicate that the lower MVC torque in CF did not result from the direct impact of a CFTR defect on the sarcolemmal excitability; the differences more likely resulted from the less developed musculature in the patients with CF.


2009 ◽  
Vol 107 (1) ◽  
pp. 80-89 ◽  
Author(s):  
T. M. Altenburg ◽  
A. de Haan ◽  
P. W. L. Verdijk ◽  
W. van Mechelen ◽  
C. J. de Ruiter

Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects ( n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20° range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50°). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 ± 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher ( P < 0.05) at knee angles 10° more extended (43.7 ± 22.2 N·m) and not different ( P > 0.05) at knee angles 10° more flexed (35.2 ± 17.9 N·m) compared with recruitment threshold at AngleTmax (41.8 ± 21.4 N·m). Also, unexpectedly the discharge rates were similar ( P > 0.05) at the three angles: 11.6 ± 2.2, 11.6 ± 2.1, and 12.3 ± 2.1 Hz. Similar angle independent discharge rates were also found for 12 units ( n = 5; 7.4 ± 5.4 %MVC) studied over the wider (50°) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 526
Author(s):  
Rafael Ribeiro Alves ◽  
Carlos Alexandre Vieira ◽  
Martim Bottaro ◽  
Murilo Augusto Soares de Araújo ◽  
Daniel Costa Souza ◽  
...  

The present article aims to compare electromyographic (EMG) activity of the knee extensors during traditional resistance training (TRT) and no load resistance training with or without visual feedback (NL-VF and NL-NF). Sixteen healthy men (age: 25.2 ± 3.6) volunteered to participate in the study. Participants visited the laboratory on three occasions involving: (1) a 10 repetition maximum test (10 RM test), (2) familiarization and (3) performance of knee extensions using TRT, NL-VF and NL-NF in a random order, with 10 min of rest between them. TRT involved the performance of a set to momentary muscle failure using the 10 RM load. NL-NF involved the performance of 10 repetitions with no external load, but with the intention to maximally contract the muscles during the whole set. NL-VF involved the same procedure as NL-NF, but a monitor was positioned in front of the participants to provide visual feedback on the EMG activity. Peak and mean EMG activity were evaluated on the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF). Results: there were no significant differences in VM and VL peak EMG activity among different situations. There was a significant difference for peak EMG activity for RF, where TRT resulted in higher values than NL-VF and NL-NF (p < 0.05). Higher values of mean EMG activity were found for VM, VL and RF during TRT in comparison with both NL-VF and NL-NF. Conclusions: resistance training with no external load produced high levels of peak muscle activation, independent of visual feedback, but mean activation was higher during TRT. These results suggest that training with no external load might be used as a strategy for stimulating the knee extensors when there is limited access to specialized equipment. Although the clinical applications of no load resistance training are promising, it is important to perform long-term studies to test if these acute results will reflect in muscle morphological and functional changes.


Sign in / Sign up

Export Citation Format

Share Document