Storm-water jets and plumes in rivers and estuaries

2007 ◽  
Vol 34 (6) ◽  
pp. 691-702 ◽  
Author(s):  
J Alex McCorquodale

The interaction of storm-water discharges with the flow in rivers and estuaries often involves cross-flowing jets or plumes. This paper reviews the theoretical, experimental, numerical, and field research on this topic. The geometry of the outfall, the jet velocity ratio, and the relative density of the discharging flow have been shown to affect the mixing and dilution of the discharge into the ambient water. Storm-water outfalls are typically circular or rectangular; however, there are numerous open channel outfalls that have trapezoidal or irregular cross sections with large width to depth ratios. The extensive research of pioneers such as N. Rajaratnam on jets and plumes has led to the development of software packages for outfall evaluations. The CORMIX model is an example of one of these packages. The research on which these models are based is discussed, and some guidelines are given for estimating the dilution at outfalls with high width to depth ratios.Key words: storm water, outfalls, jets, plumes, cross flow, modelling.

2021 ◽  
pp. 1-17
Author(s):  
K. Xiao ◽  
J. He ◽  
Z. Feng

ABSTRACT This paper proposes an alternating elliptical impingement chamber in the leading edge of a gas turbine to restrain the cross flow and enhance the heat transfer, and investigates the detailed flow and heat transfer characteristics. The chamber consists of straight sections and transition sections. Numerical simulations are performed by solving the three-dimensional (3D) steady Reynolds-Averaged Navier–Stokes (RANS) equations with the Shear Stress Transport (SST) k– $\omega$ turbulence model. The influences of alternating the cross section on the impingement flow and heat transfer of the chamber are studied by comparison with a smooth semi-elliptical impingement chamber at a cross-flow Velocity Ratio (VR) of 0.2 and Temperature Ratio (TR) of 1.00 in the primary study. Then, the effects of the cross-flow VR and TR are further investigated. The results reveal that, in the semi-elliptical impingement chamber, the impingement jet is deflected by the cross flow and the heat transfer performance is degraded. However, in the alternating elliptical chamber, the cross flow is transformed to a pair of longitudinal vortices, and the flow direction at the centre of the cross section is parallel to the impingement jet, thus improving the jet penetration ability and enhancing the impingement heat transfer. In addition, the heat transfer in the semi-elliptical chamber degrades rapidly away from the stagnation region, while the longitudinal vortices enhance the heat transfer further, making the heat transfer coefficient distribution more uniform. The Nusselt number decreases with increase of VR and TR for both the semi-elliptical chamber and the alternating elliptical chamber. The alternating elliptical chamber enhances the heat transfer and moves the stagnation point up for all VR and TR, and the heat transfer enhancement is more obvious at high cross-flow velocity ratio.


2019 ◽  
Vol 10 (2) ◽  
pp. 459-470
Author(s):  
V. A. Kontorovich ◽  
В. V. Lunev ◽  
V. V. Lapkovsky

The article discusses the geological structure, oil‐and‐gas‐bearing capacities and salt tectogenesis of the Anabar‐Khatanga saddle located on the Laptev Sea shore. In the study area, the platform sediments are represented by the 14‐45 km thick Neoproterozoic‐Mesozoic sedimentary complexes. The regional cross‐sections show the early and middle Devonian salt‐bearing strata and associated salt domes in the sedimentary cover, which may be indicative of potential hydrocarbon‐containing structures. Diapirs reaching the ground surface can be associated with structures capable of trapping hydrocarbons, and typical anticline structures can occur above the domes buried beneath the sediments. In our study, we used the algorithms and software packages developed by A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG SB RAS). Taking into account the structural geological features of the study area, we conducted numerical simulation of the formation of salt dome structures. According to the numerical models, contrasting domes that reached the ground surface began to form in the early Permian and developed most intensely in the Mesozoic, and the buried diapirs developed mainly in the late Cretaceous and Cenozoic.


Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. N. Pronin ◽  
...  

The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of “Afrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core.


Author(s):  
Xiaokang Xin ◽  
Fengpeng Bai ◽  
Kefeng Li

A numerical model based on the Saint-Venant equations (one-dimensional shallow water equations) is proposed to simulate shallow flows in an open channel with regular and irregular cross-section shapes. The Saint-Venant equations are solved by the finite-volume method based on Godunov-type framework with a modified Harten, Lax, and van Leer (HLL) approximate Riemann solver. Cross-sectional area is replaced by water surface level as one of primitive variables. Two numerical integral algorithms, compound trapezoidal and Gauss–Legendre integrations, are used to compute the hydrostatic pressure thrust term for natural streams with arbitrary and irregular cross-sections. The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and second-order Runge–Kutta methods is adopted to achieve second-order accuracy in space and time, respectively. The performance of the resulting scheme is evaluated by application in rectangular channels, trapezoidal channels, and a natural mountain river. The results are compared with analytical solutions and experimental or measured data. It is demonstrated that the numerical scheme can simulate shallow flows with arbitrary cross-section shapes in practical conditions.


Author(s):  
Khodayar Javadi ◽  
Aliyar Javadi

A well performance film cooling implies for a high cooling effectives accompanied with a wide cooling coverage. During the past six decades, film cooling effectiveness has been well defined with a specific relation to quantify it. However, despite of numerous film cooling research, there is not an explicit method to quantify the uniformity of a coolant film spread over the hot surfaces. This work introduces a cooling uniformity coefficient (CUC) to evaluate how well a coolant film spreads over a surface being cooled. Four different cases are computationally studied. In the three cases, a single jet is injected into a hot cross flow with different jet exit shapes (i.e. square, spanwise rectangular, and streamwise rectangular). The fourth case is a novel combined triple jet (CTJ) introduced in our previous work. The cross sections of all the systems are equal to maintain the same coolant mass flow rate injection into the hot cross flow. The CUC’s of the different cases are compared with each other at two blowing ratios of 0.5 and 1.5. It is proposed that in addition to the film cooling effectiveness, the CUC is a necessary parameter to evaluate how well a coolant film is spread over a hot surface.


Author(s):  
M. H. Al-Hajeri ◽  
A. Witry

Cylindrical or candle filters have been developed for cleaning the hot combustion gas streams upstream of the turbine in a combined cycle power plant. To obtain continues operation a periodic cleaning is necessary and the cleaning efficiency depends on the distribution of the filtration cake. Consequently uniform particle deposition on the filter element surface is desired. The flow around three filter elements in cross flow is investigated computationally using the commercial code FLUENT. Three filter elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the filter element.


Author(s):  
M. S. Adaramola ◽  
D. Sumner ◽  
D. J. Bergstrom

The effect of the jet-to-cross-flow velocity ratio, R, on the turbulent wake of a cylindrical stack of AR = 9 was investigated with two-component thermal anemometry. The cross-flow Reynolds number was ReD = 2.3×104, the jet Reynolds number ranged from Red = 7×103 to 4.6×104, and R was varied from 0 to 3. The stack was partially immersed in a flat-plate turbulent boundary layer, with a boundary layer thickness-to-height ratio of δ/H = 0.5 at the location of the stack. The flow around the stack was broadly classified into three flow regimes depending on the value of R, which were the downwash (R < 0.5), cross-wind dominated (0.5 < R < 1.5), and jet-dominated (R > 1.5) regimes. Each flow regime had a distinct structure to the mean velocity (streamwise and wall-normal directions), turbulence intensity (streamwise and wall-normal directions), and Reynolds shear stress fields.


Author(s):  
Shawn Aram ◽  
Andrew DeJong

A computational study is conducted to compare the performance of an array of steady jets and sweeping jets (generated by fluidic oscillator) interacting with an attached turbulent cross flow. Both jets operate at the same supply rate and with the jet-to-freestream velocity ratio of three. Two array spacings are considered in this study; one is chosen based on the minimum possible distance between the adjacent fluidic oscillators, and the other spacing represents an actuator’s configuration with the least interaction between jets. The improved delayed detached eddy simulation model is employed as a high fidelity turbulence modeling approach to resolve accurately the flow structures. Formation of strong vortex pairs is observed in both actuation techniques with the opposite sense of rotation between them. As expected, the sweeping jet affects a wider region of incoming turbulent flow along the spanwise direction compared to the steady jet. Examining the turbulence properties of the flow downstream of the jets indicates that the sweeping jet is a better candidate for enhancing the mixing mechanism used to control separation. Comparing both the instantaneous and time-averaged flow fields generated by the sweeping jets and steady jets reveals that the interaction between the adjacent sweeping jets at the minimum spacing arrangement is significantly stronger than that of the steady jets.


2019 ◽  
Vol 21 (6) ◽  
pp. 980-998
Author(s):  
Milad Khosravi ◽  
Mitra Javan

Abstract The capability to predict the distribution of pollutants in water bodies is one of the most important issues in the design of jet outfalls. Three-dimensional computational fluid dynamics (CFD) model and multi-objective evolutionary polynomial regression (EPR-MOGA) are used and compared in modeling the temperature field in the side thermal buoyant discharge in the cross flow. The input variables used for training the EPR-MOGA models are spatial coordinates (x, y, z), jet to cross flow velocity ratio (R), depth of the channel (d), and the temperature excess (T0). A previous experimental study is used to verify and compare the performance of the EPR-MOGA and CFD models. The results show that the EPR-MOGA model predicts the thermal cross section of the flow and the spread of pollutants at the surface with a better accuracy than the CFD model. However, the CFD method performs significantly better than EPR-MOGA in predicting temperature profiles. The uncertainty analysis indicated that the EPR-MOGA model had lower mean prediction error and smaller uncertainty band than the CFD model. The relationships achieved by the EPR-MOGA model are very useful to predict temperature profiles, temperature half-thickness, and temperature spread on surface in practice.


Sign in / Sign up

Export Citation Format

Share Document