Effects of clear-cutting on the composition of bacterial populations of northern spruce forest soil

1977 ◽  
Vol 23 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Seppo Niemelä ◽  
Veronica Sundman

This paper concerns the microbiological part of an investigation, the goal of which is to describe the biological changes in coniferous forest soil upon clear-cutting in a northern (66°20′ N) moraine area where reforestation after clear-cutting had been met with difficulty. The zoological part of the work has been published elsewhere. Clear-cut sites of increasing age (4, 7, and 13 years) were investigated and compared with a forest area where no cutting of timber had been done for 120 years.A total of 684 random isolates of heterotrophic bacteria from pooled samples of the sites investigated were passed through 36 biochemical tests. The data were condensed by the aid of factor analysis, and a comparison of the populations was based on squared Euclidean distances between population centroids in a seven-dimensional factor space.The most marked population changes followed a course in which frequencies of some population characteristics became increasingly different until 7 years after clear-cutting, with regression towards the control clearly evident after 13 years. Disturbances of shorter duration were also relatively common, with maximal changes observed in the 4-year samples, and with a complete recovery after 7 years.The mineral soil populations seemed to undergo greater changes than the humus populations.The most distinct changes believed to be due to clear-cutting were the short-term relative increase of organisms producing acid from sucrose and dissolving CaHPO4, and a long-term increase of lipolytic and caseolytic, rhamnose-negative organisms; both in the mineral soil layer. In the humus layer, a short-term increase of lipolytic and of rhamnose-positive organisms seemed to take place.

2008 ◽  
Vol 48 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Lena Grønflaten ◽  
Eiliv Steinnes ◽  
Göran Örlander

Effect of conventional and whole-tree clear-cutting on concentrations of some micronutrients in coniferous forest soil and plants Increasingly intensive and mechanized clear-cutting may deplete the forest ecosystem of essential nutrients. A clear-cut area near Växjö, southern Sweden, was investigated for changes in Mn, Cu and Zn in soil (NH4NO3 extractable and HNO3 soluble) and wavy hair grass (Deschampsia flexuosa) after conventional (CC) and whole-tree clear-cutting (WTC). The soil samples were mostly iron podzols. The area consisted of four clear-cut sites, respectively 2, 4, 6 and 8 years old, and an uncut forest reference stand. Each of the clear-cuts was split in two parts representing WTC and CC sites. Manganese showed the most definite trends after clear-cutting, exhibiting higher extractable concentrations in Oe, Oa and E horizons (4-8 years after clear-cutting) and B horizons (6-8 years after clear-cutting). The increase of exchangeable Mn in the E (2-8 years) and B (4-8 years) horizons was particularly strong. Zn concentrations tended to fluctuate with time. There was a tendency to higher Mn and Zn concentrations in the humus layer especially 2 years after CC-treatment compared with WTC, whereas the opposite trend was apparent for Cu. Mn, Cu and Zn concentrations decreased in Deschampsia flexuosa 2 years after clear-cutting, possibly due to increased soil pH.


1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


1993 ◽  
Vol 23 (12) ◽  
pp. 2521-2536 ◽  
Author(s):  
Xiwei Yin ◽  
Paul A. Arp

A process-oriented forest soil temperature model, FORSTEM, is presented. FORSTEM considers vertical heat conduction as well as freezing and thawing, and it lumps the effects of forest canopies on soil surface temperature with the surface heat transfer coefficient. It runs in conjunction with the forest hydrologic model, FORHYM. FORSTEM and FORHYM input is limited to (i) air temperature; (ii) precipitation and its snow fraction; and (iii) descriptive site information (latitude, elevation, slope, aspect, forest coverage, and soil layer thickness and texture). FORSTEM uses generalized parameters derived from existing empirical information. The model was applied to 10 different cover type–site conditions, including lawns, deciduous forests, and coniferous forests before and after clear-cutting in Ontario, Quebec, New Brunswick, and Colorado. The only model parameter we calibrated for different sites was the effective ground/air conductance ratio. The ratio was found to be a function of incoming solar radiation and vegetative area index. Differences between monthly simulations and field measurements fell within ± 1.5 °C for at least about three-quarters of the data cases at individual sites. Major exceptions occurred when temperature measurements showed no damping down the soil profile or with soils containing large air gaps between coarse rock fragments.


1995 ◽  
Vol 6 (2-3) ◽  
pp. 79-90 ◽  
Author(s):  
Ola Atlegrim ◽  
Kjell Sjöberg

Our aim was to analyse the short-term effects (0-4 years) of selective felling and clear-cutting on the food resources of insectivorous birds. Literature data on bird diets showed that herbivorous larvae (Lepidoptera and Hymenoptera: Symphyta) and spiders (Araneae) were used by 81 and 50%, respectively, of 16 bird species breeding in the Swedish boreal coniferous forest. A field study comparing selective fellings, clear-cuttings and uncut controls showed considerable effects of clear-cutting on both terricolous and field layer invertebrates. Clear-cuttings had significantly lower abundance and biomass, and a different composition of herbivorous larvae and spiders, as well as a lower total biomass of invertebrates in the field layer than controls. Drastic changes of abiotic factors (like increased temperature range) following clear-cutting may directly affect the occurrence of invertebrates. However, indirect effects (like increased sun exposure, affecting food plant quality for herbivorous larvae) are probably also responsible. Selective fellings did not differ from controls in the occurrence of herbivorous larvae and spiders. Therefore, over the four-year term of our study, selective felling seems to provide birds with conditions similar to uncut forest for invertebrates used by birds.


2012 ◽  
Vol 58 (No. 2) ◽  
pp. 57-66 ◽  
Author(s):  
v. Šrámek ◽  
V. Fadrhonsová ◽  
L. Vortelová ◽  
B. Lomský

The article focuses on changes in soil chemistry observed on plots limed in 2000 in the western Ore Mts.(Krušné hory) on the basis of chemical analyses done before liming and repeated in 2002, 2005 and 2010. In the deeper mineral soil (down to 30 cm), only the increase in pH and exchangeable magnesium was significant. The increase in exchangeable calcium in upper soil layers was significant in 2002 and 2005 only; ten years after liming the effect was negligible, although the number of Ca deficient samples was lower than in 2000. The exchangeable Mg content increased above the deficiency limit in all samples of upper soil, and an increase was also found in the deeper mineral soil. These changes were reflected in increasing base saturation and lower base cations/aluminium ratio in the organic and organomineral soil layer. Despite these positive shifts, calcium and magnesium deficiency and very low base saturation (< 10%) still prevail in the deeper mineral soil (2–30 cm) and are common even in the upper mineral soil. The increased total nitrogen level observed two and five years after liming indicated enhanced decomposition of the humus layer. On the other hand, N content in the upper organic (FH) horizon as well as in deeper mineral soil did not change significantly.  


1982 ◽  
Vol 60 (9) ◽  
pp. 1815-1821 ◽  
Author(s):  
Anders Granström

The viable seed content of soil samples from five coniferous forest stands in northern Sweden, aged 16–169 years, was determined by means of germination trials. The soil samples were separated into five fractions: three organic horizons and two mineral soil horizons. Seedlings of 15 phanerogam species emerged, representing densities of 239–763 seeds/m2 in the soils from the different stands. The depth distributions of the seeds varied with both plant species and forest stand. Most seeds were found at various depths in the humus layer, but in one stand an appreciable seed density of Luzula pilosa was present in the mineral soil. Most of the seedlings belonged to plant species present in the vegetation or with good means of dispersal. The depth distribution data, however, suggest that Luzula pilosa in particular may have a persistent seed bank. The role of persistent seeds in the vegetational composition of the boreal forest is discussed.


1992 ◽  
Vol 22 (6) ◽  
pp. 864-877 ◽  
Author(s):  
Paul A. Arp ◽  
Xiwei Yin

A process-oriented computer model addressing all major water fluxes through forests is introduced. The model is driven by monthly mean air temperature, monthly precipitation, and mean snow fraction of that precipitation. Other data requirements are limited to latitude, proportions of coniferous and deciduous trees in the forest, thickness of each soil layer (forest floor, soil, and subsoil), and clay fraction (or texture) of each mineral soil layer. The number of parameters to be calibrated is kept at a minimum. Parameter calibration is applicable across sites without further modification unless warranted by outstanding physical differences. The model successfully reproduces available data on throughfall, snowpack, forest floor percolate, soil water content, and streamflow from a deciduous forest in Ontario (Turkey Lakes) and a coniferous forest in Quebec (Lake Laflamme).


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 986 ◽  
Author(s):  
Ziteng Luo ◽  
Jianzhi Niu ◽  
Baoyuan Xie ◽  
Linus Zhang ◽  
Xiongwen Chen ◽  
...  

Root-induced channels are the primary controlling factors for rapid movement of water and solute in forest soils. To explore the effects of root distribution on preferential flow during rainfall events, deciduous (Quercus variabilis BI.) and coniferous forest (Platycladus orientalis (L.) Franco) sites were selected to conduct dual-tracer experiments (Brilliant Blue FCF and Bromide [Br−]). Each plot (1.30 × 1.30 m) was divided into two subplots (0.65 × 1.30 m), and two rainfall simulations (40 mm, large rainfall and 70 mm, extreme rainfall) were conducted in these. Vertical soil profiles (1.00 m × 0.40 m) were excavated, and preferential flow path features were quantified based on digital image analysis. Root (fine and coarse) abundance and Br− concentration were investigated for each soil profile. In deciduous forest, accumulated roots in the upper soil layer induce larger lateral preferential flow as compared to the coniferous forest soil during large rainfall events. Compared with deciduous forest, coniferous forest soil, with higher (horizontal and vertical) spatial variability of preferential flow paths, promotes higher percolation and solute leaching to deeper soil layers during extreme rainfall events. Fine roots, accounting for a larger proportion of total roots (compared to coarse roots), facilitate preferential flow in the 0–40 cm forest soil layer. Overall, our results indicate that the root distribution pattern of different tree species can exert diverse effects on preferential flow in forest soils.


2004 ◽  
Vol 34 (5) ◽  
pp. 1136-1149 ◽  
Author(s):  
Jeffrey P Battigelli ◽  
John R Spence ◽  
David W Langor ◽  
Shannon M Berch

This study examines the short-term impact of forest soil compaction and organic matter removal on soil mesofauna, in general, and oribatid mite species, in particular. Both soil compaction and organic matter removal reduced the density of soil mesofauna. Stem-only harvesting reduced total mesofauna densities by 20% relative to uncut forest values. A combination of whole-tree harvest and forest floor removal with heavy soil compaction significantly reduced total soil mesofauna densities by 93% relative to the uncut forest control. Removal of the forest floor represents a substantial loss of habitat for most soil mesofauna. The forest floor apparently buffered the mineral soil by limiting both the impact of soil compaction and fluctuations in soil temperature and moisture. The relative abundance of Prostigmata and Mesostigmata increased with treatment severity, whereas that of Oribatida decreased. Species richness of the oribatid mite fauna was reduced as the severity of treatments increased. The number of rare oribatid species (those representing <1% of the total oribatid mite sample) decreased by 40% or more relative to the uncut forest control. Evenness also decreased as treatment severity increased. Oppiella nova and Suctobelbella sp. near acutidens were the dominant oribatid species in both the forest floor and mineral soil, regardless of treatment. Soil compaction and organic matter removal significantly impacted the density and diversity of soil mesofauna and oribatid mite fauna in the short term at these study sites.


1987 ◽  
Vol 67 (4) ◽  
pp. 943-952 ◽  
Author(s):  
H. H. KRAUSE ◽  
D. RAMLAL

Anion and cation resins were tested as sinks for nutrient ions under variable forest soil conditions. The resins, contained in nylon bags, were placed for periods of 4 wk below the forest floor of a softwood stand, and at approximately 7.5 cm depth on an adjacent clearcut with two different types of site preparation for tree planting. The soil was an Orthic Humo-ferric Podzol. Ion sorption below the forest floor, especially the sorption of ammonium, nitrate and phosphate, was strongly increased after clear-cutting of the forest. Sorption rates were generally lower in the mineral soil than immediately below the forest floor, except for nitrate and sulphate. Mixing of forest floor materials and fine logging debris into the mineral surface horizons generally increased resin sorption if compared to sorption in soil from which the forest floor had been removed. Resin sorption also revealed strong seasonal effects which may have been caused by changes in soil temperature and moisture. Key words: Ion exchange resin, forest soil fertility, seasonal nutrient fluctuation, site preparation


Sign in / Sign up

Export Citation Format

Share Document