Predicting forest soil temperatures from monthly air temperature and precipitation records

1993 ◽  
Vol 23 (12) ◽  
pp. 2521-2536 ◽  
Author(s):  
Xiwei Yin ◽  
Paul A. Arp

A process-oriented forest soil temperature model, FORSTEM, is presented. FORSTEM considers vertical heat conduction as well as freezing and thawing, and it lumps the effects of forest canopies on soil surface temperature with the surface heat transfer coefficient. It runs in conjunction with the forest hydrologic model, FORHYM. FORSTEM and FORHYM input is limited to (i) air temperature; (ii) precipitation and its snow fraction; and (iii) descriptive site information (latitude, elevation, slope, aspect, forest coverage, and soil layer thickness and texture). FORSTEM uses generalized parameters derived from existing empirical information. The model was applied to 10 different cover type–site conditions, including lawns, deciduous forests, and coniferous forests before and after clear-cutting in Ontario, Quebec, New Brunswick, and Colorado. The only model parameter we calibrated for different sites was the effective ground/air conductance ratio. The ratio was found to be a function of incoming solar radiation and vegetative area index. Differences between monthly simulations and field measurements fell within ± 1.5 °C for at least about three-quarters of the data cases at individual sites. Major exceptions occurred when temperature measurements showed no damping down the soil profile or with soils containing large air gaps between coarse rock fragments.

Author(s):  
Виктор Михайлович Белолипецкий ◽  
Светлана Николаевна Генова

Практический интерес в районах вечной мерзлоты представляет глубина сезонного оттаивания. Построена одномерная (в вертикальном направлении) упрощенная полуэмпирическая модель динамики вечной мерзлоты в “приближении медленных движений границ фазового перехода”, основанная на задаче Стефана и эмпирических соотношениях. Калибровочные параметры модели выбираются для исследуемого района с использованием натурных измерений глубины оттаивания и температуры воздуха. Проверка работоспособности численной модели проведена для района оз. Тулик (Аляска). Получено согласие рассчитанных значений глубины талого слоя и температуры поверхности почвы с результатами измерений Due to the change in global air temperature, the assessment of permafrost reactions to climate change is of interest. As the climate warms, both the thickness of the thawed soil layer and the period for existence of the talik are increased. The present paper proposes a small-size numerical model of vertical temperature distributions in the thawed and frozen layers when a frozen layer on the soil surface is absent. In the vertical direction, thawed and frozen soils are separated. The theoretical description of the temperature field in soils when they freeze or melt is carried out using the solution of the Stefan problem. The mathematical model is based on thermal conductivity equations for the frozen and melted zones. At the interfacial boundary, the Dirichlet condition for temperature and the Stefan condition are set. The numerical methods for solving of Stefan problems are divided into two classes, namely, methods with explicit division of fronts and methods of end-to-end counting. In the present work, the method with the selection of fronts is implemented. In the one-dimensional Stefan problem, when transformed to new variables, the computational domain in the spatial variable is mapped onto the interval [0 , 1]. In the presented equations, the convective terms characterize the rate of temperature transfer (model 1). A simplified version of the Stefan problem solution is considered without taking into account this rate (“approximation of slow movements of the boundaries of the phase transition”, model 2). The model is tuned to a specific object of research. Model parameter values can vary significantly in different geographic regions. This paper simulates the dynamics of permafrost in the area of Lake Tulik (Alaska) in summer. Test calculations based on the proposed simplified model show its adequacy and consistency with field measurements. The developed model can be used for qualitative studies of the long-term dynamics of permafrost using data of the air temperature, relative air humidity and precipitation


2008 ◽  
Vol 9 (5) ◽  
pp. 936-950 ◽  
Author(s):  
Tushar Sinha ◽  
Keith A. Cherkauer

Abstract Seasonal cycles of freezing and thawing influence surface energy and water cycle fluxes. Specifically, soil frost can lead to the reduction in infiltration and an increase in runoff response, resulting in a greater potential for soil erosion. An increase in the number of soil freeze–thaw cycles may reduce soil compaction, which could affect various hydrologic processes. In this study, the authors test for the presence of significant trends in soil freeze–thaw cycles and soil temperatures at several depths and compare these with other climatic variables including air temperature, snowfall, snow cover, and precipitation. Data for the study were obtained for three research stations located in northern, central, and southern Indiana that have collected soil temperature observations since 1966. After screening for significant autocorrelations, testing for trends is conducted at a significance level of 5% using Mann–Kendall’s test. Observations from 1967 to 2006 indicate that air temperatures during the cold season are increasing at all three locations, but there is no significant change in seasonal and annual average precipitation. At the central and southern Indiana sites, soil temperatures are generally warming under a bare soil surface, with significant reductions in the number of days with soil frost and freeze–thaw cycles for some depths. Meanwhile, 5-cm soils at the northernmost site are experiencing significant decreases in cold season temperatures, as an observed decrease in annual snowfall at the site is counteracting the increase in air temperature. Seasonal mean maximum soil temperatures under grass cover are increasing at the southernmost site; however, at the central site, it appears that seasonal minimum soil temperatures are decreasing and the number of freeze–thaw cycles is increasing.


Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 94 ◽  
Author(s):  
Dana Coppernoll-Houston ◽  
Christopher Potter

The purpose of this study was to better understand the relationships between diurnal variations of air temperature measured hourly at the soil surface, compared with the thermal infra-red (TIR) emission properties of soil surfaces located in the Lower Colorado Desert of California, eastern Riverside County. Fifty air temperature loggers were deployed in January of 2017 on wooden stakes that were driven into the sandy or rocky desert soils at both Ford Dry Lake and the southern McCoy Mountains wash. The land surface temperature (LST) derived from Landsat satellite images was compared to measured air temperatures at 1 m and at the soil surface on 14 separate dates, until mid-September, 2017. Results showed that it is feasible to derive estimated temperatures at the soil surface from hourly air temperatures, recorded at 1 m above the surface (ambient). The study further correlated Landsat LST closely with site measurements of air and surface temperatures in these solar energy development zones of southern California, allowing inter-conversion with ground-based measurements for use in ecosystem change and animal population biology studies.


1977 ◽  
Vol 23 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Seppo Niemelä ◽  
Veronica Sundman

This paper concerns the microbiological part of an investigation, the goal of which is to describe the biological changes in coniferous forest soil upon clear-cutting in a northern (66°20′ N) moraine area where reforestation after clear-cutting had been met with difficulty. The zoological part of the work has been published elsewhere. Clear-cut sites of increasing age (4, 7, and 13 years) were investigated and compared with a forest area where no cutting of timber had been done for 120 years.A total of 684 random isolates of heterotrophic bacteria from pooled samples of the sites investigated were passed through 36 biochemical tests. The data were condensed by the aid of factor analysis, and a comparison of the populations was based on squared Euclidean distances between population centroids in a seven-dimensional factor space.The most marked population changes followed a course in which frequencies of some population characteristics became increasingly different until 7 years after clear-cutting, with regression towards the control clearly evident after 13 years. Disturbances of shorter duration were also relatively common, with maximal changes observed in the 4-year samples, and with a complete recovery after 7 years.The mineral soil populations seemed to undergo greater changes than the humus populations.The most distinct changes believed to be due to clear-cutting were the short-term relative increase of organisms producing acid from sucrose and dissolving CaHPO4, and a long-term increase of lipolytic and caseolytic, rhamnose-negative organisms; both in the mineral soil layer. In the humus layer, a short-term increase of lipolytic and of rhamnose-positive organisms seemed to take place.


Author(s):  
S.E. Rudov ◽  
◽  
V.Ya. Shapiro ◽  
O.I. Grigoreva ◽  
I.V. Grigorev ◽  
...  

In the Russian Federation logging operations are traditionally carried out in winter. This is due to the predominance of areas with swamped and water-logged (class III and IV) soils in the forest fund, where work of forestry equipment is difficult, and sometimes impossible in the warm season. The work of logging companies in the forests of the cryolithozone, characterized by a sharply continental climate, with severe frosts in winter, is hampered by the fact that forest machines are not recommended to operate at temperatures below –40 °C due to the high probability of breaking of metal structures and hydraulic system. At the same time, in the warm season, most of the cutting areas on cryosolic soils become difficult to pass for heavy forest machines. It turns out that the convenient period for logging in the forests of the cryolithozone is quite small. This results in the need of work in the so-called off-season period, when the air temperature becomes positive, and the thawing processes of the soil top layer begin. The same applies to the logging companies not operating in the conditions of cryosolic soils, for instance, in the Leningrad, Novgorod, Pskov, Vologda regions, etc. The observed climate warming has led to a significant reduction in the sustained period of winter logging. Frequent temperature transitions around 0 °C in winter, autumn and spring necessitate to work during the off-season too, while cutting areas thaw. In bad seasonal and climatic conditions, which primarily include off-season periods in general and permafrost in particular, it is very difficult to take into account in mathematical models features of soil freezing and thawing and their effect on the destruction nature. The article shows that the development of long-term predictive models of indicators of cyclic interaction between the skidding system and forest soil in adverse climatic conditions of off-season logging operations in order to improve their reliability requires rapid adjustment of the calculated parameters based on the actual experimental data at a given step of the cycles.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna K. Liljedahl ◽  
Ina Timling ◽  
Gerald V. Frost ◽  
Ronald P. Daanen

AbstractShrub expansion has been observed across the Arctic in recent decades along with warming air temperatures, but tundra shrub expansion has been most pronounced in protected landscape positions such as floodplains, streambanks, water tracks, and gullies. Here we show through field measurements and laboratory analyses how stream hydrology, permafrost, and soil microbial communities differed between streams in late summer with and without tall shrubs. Our goal was to assess the causes and consequences of tall shrub expansion in Arctic riparian ecosystems. Our results from Toolik Alaska, show greater canopy height and density, and distinctive plant and soil microbial communities along stream sections that lose water into unfrozen ground (talik) compared to gaining sections underlain by shallow permafrost. Leaf Area Index is linearly related to the change in streamflow per unit stream length, with the densest canopies coinciding with increasingly losing stream sections. Considering climate change and the circumpolar scale of riparian shrub expansion, we suggest that permafrost thaw and the resulting talik formation and shift in streamflow regime are occurring across the Low Arctic.


2016 ◽  
Vol 17 (4) ◽  
pp. 1281-1293 ◽  
Author(s):  
Zhipin Ai ◽  
Yonghui Yang

Abstract Compared with more comprehensive physical algorithms such as the Penman–Monteith model, the Priestley–Taylor model is widely used in estimating evapotranspiration for its robust ability to capture evapotranspiration and simplicity of use. The key point in successfully using the Priestley–Taylor model is to find a proper Priestley–Taylor coefficient, which is variable under different environmental conditions. Based on evapotranspiration partition and plant physiological limitation, this study developed a new model for estimating the Priestley–Taylor coefficient incorporating the effects of three easily obtainable parameters such as leaf area index (LAI), air temperature, and mulch fraction. Meanwhile, the effects of plastic film on the estimation of net radiation and soil heat flux were fully considered. The reliability of the modified Priestley–Taylor model was testified using observed cotton evapotranspiration from eddy covariance in two growing seasons, with high coefficients of determination of 0.86 and 0.81 in 2013 and 2014, respectively. Then, the modified model was further validated by estimating cotton evapotranspiration under three fractions of mulch cover: 0%, 60%, and 100%. The estimated values agreed well with the measured values via water balance analysis. It can be found that seasonal variation of the modified Priestley–Taylor coefficient showed a more reasonable pattern compared with the original coefficient of 1.26. Sensitivity analysis showed that the modified Priestley–Taylor coefficient was more sensitive to LAI than to air temperature. Overall, the modified model has much higher accuracy and could be used for evapotranspiration estimation under plastic mulch condition.


Sign in / Sign up

Export Citation Format

Share Document