scholarly journals  Development of chemical soil properties in the western Ore Mts. (Czech Republic) 10 years after liming

2012 ◽  
Vol 58 (No. 2) ◽  
pp. 57-66 ◽  
Author(s):  
v. Šrámek ◽  
V. Fadrhonsová ◽  
L. Vortelová ◽  
B. Lomský

The article focuses on changes in soil chemistry observed on plots limed in 2000 in the western Ore Mts.(Krušné hory) on the basis of chemical analyses done before liming and repeated in 2002, 2005 and 2010. In the deeper mineral soil (down to 30 cm), only the increase in pH and exchangeable magnesium was significant. The increase in exchangeable calcium in upper soil layers was significant in 2002 and 2005 only; ten years after liming the effect was negligible, although the number of Ca deficient samples was lower than in 2000. The exchangeable Mg content increased above the deficiency limit in all samples of upper soil, and an increase was also found in the deeper mineral soil. These changes were reflected in increasing base saturation and lower base cations/aluminium ratio in the organic and organomineral soil layer. Despite these positive shifts, calcium and magnesium deficiency and very low base saturation (< 10%) still prevail in the deeper mineral soil (2–30 cm) and are common even in the upper mineral soil. The increased total nitrogen level observed two and five years after liming indicated enhanced decomposition of the humus layer. On the other hand, N content in the upper organic (FH) horizon as well as in deeper mineral soil did not change significantly.  

1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 613
Author(s):  
Neil F. J. Ott ◽  
Shaun A. Watmough

Forest composition has been altered throughout Eastern North America, and changes in species dominance may alter nutrient cycling patterns, influencing nutrient availability and distribution in soils. To assess whether nutrients and metals in litterfall and soil differed among sites influenced by five common Ontario tree species (balsam fir (Abies balsamea (L.) Mill.), eastern hemlock (Tsuga canadensis (L.) Carr.), white pine (Pinus strobus L.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britt.)), litterfall and soil chemistry were measured at a managed forest in Central Ontario, Canada. Carbon (C) and macronutrient (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)) inputs in litterfall varied significantly among sites, primarily due to differences in litterfall mass, which was greatest in deciduous-dominated sites, while differences in elemental concentrations played relatively minor roles. Trace metal inputs in litterfall also varied, with much higher zinc (Zn) and cadmium (Cd) in litterfall within yellow birch dominated stands. Mineral soil oxide composition was very similar among sites, suggesting that differences in soil chemistry were influenced by forest composition rather than parent material. Litter in deciduous-dominated stands had lower C/N, and soils were less acidic than conifer-dominated sites. Deciduous stands also had much shorter elemental residence times in the organic horizons, especially for base cations (Ca, Mg, K) compared with conifer-dominated sites, although total soil nutrient pools were relatively consistent among sites. A change from stands with greater conifer abundance to mixed hardwoods has likely led to more rapid cycling of elements in forests, particularly for base cations. These differences are apparent at small scales (100 m2) in mixed forests that characterize many forested regions in Eastern North America and elsewhere.


1977 ◽  
Vol 23 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Seppo Niemelä ◽  
Veronica Sundman

This paper concerns the microbiological part of an investigation, the goal of which is to describe the biological changes in coniferous forest soil upon clear-cutting in a northern (66°20′ N) moraine area where reforestation after clear-cutting had been met with difficulty. The zoological part of the work has been published elsewhere. Clear-cut sites of increasing age (4, 7, and 13 years) were investigated and compared with a forest area where no cutting of timber had been done for 120 years.A total of 684 random isolates of heterotrophic bacteria from pooled samples of the sites investigated were passed through 36 biochemical tests. The data were condensed by the aid of factor analysis, and a comparison of the populations was based on squared Euclidean distances between population centroids in a seven-dimensional factor space.The most marked population changes followed a course in which frequencies of some population characteristics became increasingly different until 7 years after clear-cutting, with regression towards the control clearly evident after 13 years. Disturbances of shorter duration were also relatively common, with maximal changes observed in the 4-year samples, and with a complete recovery after 7 years.The mineral soil populations seemed to undergo greater changes than the humus populations.The most distinct changes believed to be due to clear-cutting were the short-term relative increase of organisms producing acid from sucrose and dissolving CaHPO4, and a long-term increase of lipolytic and caseolytic, rhamnose-negative organisms; both in the mineral soil layer. In the humus layer, a short-term increase of lipolytic and of rhamnose-positive organisms seemed to take place.


2006 ◽  
Vol 52 (Special Issue) ◽  
pp. S65-S72 ◽  
Author(s):  
B. Lomský ◽  
V. Šrámek ◽  
M. Maxa

At the end of nineties, within the mountain forests of the Krušné hory Mts., in connection with an increased acid deposition, the symptoms (yellowing) started to be visible, characterizing magnesium deficiency in the assimilation organs, when Mg contents were laying under 300 mg/kg. In mineral soil the Mg content is mostly less than 10 mg/kg. Contents of other basic elements (Ca, K) were also very low. During four years yellowing symptoms of the spruce stands have developed in an extent area of more that 10,000 ha. Since 1999, preventive measures have been adopted to improve the nutrition status of the forest stands. Liquid magnesium fertilizers as MgNsol, Lamag Mg, MgSsol were applied during the period of 1999–2002. Since 2001, in semi-operational experiment, powder Mg fertilizer – Silvamix F4 – of higher Mg content (63.3% MgO) was applied. Application of liquid fertilizer MgNsol has helped to compensate the nitrogen deficiency in the stands of insufficient nutrition in this element. Comparing of different types of liquid fertilizers has confirmed, that the highest increase of magnesium in assimilation organs was find in combined application of MgNsol and MgSsol fertilizers. Application of 300 kg/ha Silvamix F4 has increased the magnesium content in the first needle year class in 73% in average, potassium in 33%, calcium in 16%, and phosphorus in 85%. Besides increased nutrient content in needles also improvement of the health and phosphorus in 85%. Besides increased nutrient content in needles also improvement of the health state, i.e. revitalization of the stands affected can be observed.


2011 ◽  
Vol 77 (24) ◽  
pp. 8523-8531 ◽  
Author(s):  
Lu-Min Vaario ◽  
Hannu Fritze ◽  
Peter Spetz ◽  
Jussi Heinonsalo ◽  
Peter Hanajík ◽  
...  

ABSTRACTFungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroomTricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria.Tomentollopsissp. in the organic layer above the shiro andPilodermasp. in the shiro correlated positively with the presence ofT. matsutakein all experimental sites. AThermomonosporaceaebacterium andNocardiasp. correlated positively with the presence ofT. matsutake, andStreptomycessp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots.


2018 ◽  
Author(s):  
Eric McGivney ◽  
Salim Belyazid ◽  
Therese Zetterberg ◽  
Stefan Löfgren ◽  
Jon Petter Gustafsson

Abstract. Forest soils are susceptible to anthropogenic acidification. In the past, acid rain was a major contributor to soil acidification, but now that atmospheric levels of S have dramatically declined, concern has shifted towards biomass-induced acidification, i.e., decreasing soil solution pH due to tree growth and harvesting events that permanently remove base cations (BC) from forest stands. We use a novel dynamic model, HD-MINTEQ, to investigate the long-term impacts of two theoretical future harvesting scenarios in the year 2020, a conventional harvest (CH, which removes stems only) and a whole-tree harvest (WTH, which removes 100 % of the above-ground biomass except for stumps), on soil chemistry and weathering rates at three different Swedish forest sites (Aneboda, Gårdsjön, and Kindla). Furthermore, acidification following the harvesting events is compared to the historical acidification that took place during the 20th century due to acid rain. Our results indicate that historical acidification due to acid rain had a larger impact on pore water chemistry and mineral weathering than tree growth and CH or WTH events, at least if nitrification remained at a low level. However, compared to a no-harvest scenario (NH), WTH and CH significantly impacted soil chemistry and weathering rates. Directly after a harvesting event (CH or WTH), the soil solution pH sharply increased for 5 to 10 years before slowly declining over the remainder of the simulation (until year 2080). WTH acidified soils slightly more than CH, with the largest effects being seen for the B1 horizons by the year 2080. Even though the pH values in the WTH and CH scenario decreased with time as compared to NH, they did not drop to the levels observed around the peak of historic acidification (1980–1990), indicating that the pH decrease due to tree growth and harvesting would be less impactful than that of historic atmospheric acidification. Weathering rates differed across locations and soil layers in response to historic acidification, but at several sites and layers, annual weathering rates decreased in tandem with decreasing pH, which is likely due to Al3+ weathering brakes. Weathering rates after the harvesting scenarios in 2020 generally increased although the dynamics were quite different depending on the site and soil layer.


1994 ◽  
Vol 24 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Hans Winsa ◽  
Urban Bergsten

Direct seeding of Pinussylvestris L. is a regeneration method, with potential for development considering scarification, microsite preparation, seed invigoration, and seed quality. Three seed lots of different quality concerning seed weight, germination percent, and mean germination time were used on two sites in northern Sweden. Microsite preparation, 2 cm deep pyramidal indentations, of the mineral soil improved seedling emergence on the two sites by 48 and 62%, respectively, compared with seeding without preparation other than removal of the humus layer. Microsite preparation in combination with invigorated seed, i.e., seed incubated at 30% moisture content for 7 days at 15 °C, resulted in seedling emergence of about 85% for the highest and about 50% for the lowest seed quality at both sites. Noninvigorated seed, seeded without microsite preparation, reached about 55% for the highest and 22% at one and 43% at the other for the lowest seed quality. Without microsite preparation there was no, or a negative, effect of seed invigoration on seedling emergence. Seedling survival after the first winter improved significantly with better seed quality. Survival averaged 92 and 72% at the two sites, with frost heaving causing most mortality. Seedlings from invigorated and redried seed survived better than seedlings from untreated seed. Seedlings from the best seed quality had higher values in seedling height, about 35%, shoot length, about 60%, and needle length, about 30%, after two growing seasons than seedlings from lower seed qualities. Invigoration and microsite preparation had no effect on measured growth characteristics.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1300
Author(s):  
Xiaogang Ding ◽  
Xiaochuan Li ◽  
Ye Qi ◽  
Zhengyong Zhao ◽  
Dongxiao Sun ◽  
...  

Stocks and stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in ultisols are not well documented for converted forests. In this study, Ultisols were sampled in 175 plots from one type of secondary forest and four plantations of Masson pine (Pinus massoniana Lamb.), Slash pine (Pinus elliottii Engelm.), Eucalypt (Eucalyptus obliqua L’Hér.), and Litchi (Litchi chinensis Sonn., 1782) in Yunfu, Guangdong province, South China. Five layers of soil were sampled with a distance of 20 cm between two adjacent layers up to a depth of 100 cm. We did not find interactive effects between forest type and soil layer depth on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations and storages. Storage of SOC was not different between secondary forests and Eucalypt plantations, but SOC of these two forest types were lower than that in Litchi, Masson pine, and Slash pine plantations. Soil C:P was higher in Slash pine plantations than in secondary forests. Soil CNP showed a decreasing trend with the increase of soil depth. Soil TP did not show any significant difference among soil layers. Soil bulk density had a negative contribution to soil C and P stocks, and longitude and elevation were positive drivers for soil C, N, and P stocks. Overall, Litchi plantations are the only type of plantation that obtained enhanced C storage in 0–100 cm soils and diverse N concentrations among soil layers during the conversion from secondary forests to plantations over ultisols.


1992 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
N.W. Foster ◽  
M.J. Mitchell ◽  
I.K. Morrison ◽  
J.P. Shepard

Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca2+) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca2+ and Mg2+ from the TLW soil, whereas base cation inputs in precipitation equaled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly.


Sign in / Sign up

Export Citation Format

Share Document