Lipid utilization of two flower spiroplasmas and honeybee spiroplasma

1985 ◽  
Vol 31 (2) ◽  
pp. 173-176 ◽  
Author(s):  
C. J. Chang

A chemically defined medium (CC-494) was used to study the lipid utilization of two flower spiroplasmas (Spiroplasma florkola and SR-3) and honeybee spiroplasma (AS-576). All three spiroplasmas reached comparable growth yields when lauric acid, myristic acid, or stearic acid replaced palmitic acid; palmitoleic acid, linoleic acid, or linolenic acid replaced oleic acid; and campesterol, ergosterol, β-sitosterol, or stigmasterol replaced cholesterol. None of the spiroplasmas grew when 5A-cholestane replaced cholesterol.

2021 ◽  
Vol 8 (1) ◽  
pp. 67
Author(s):  
Sri Indriati ◽  
Muhammad Yusuf ◽  
Riskayanti Riskayanti ◽  
Nur Amaliah ◽  
Mahyati Latief ◽  
...  

Safflower, were extracted using propanol solvent at different time intervals: 10, 20, and 30 min at a constant temperature of 40°C. The extracts were analyzed by GC/MS technique. The major compounds identified were tetrapentacontane, tetracontane, triacontanol, gamma sitosterol, myristic acid, linoleic acid, stearic acid, palmitic acid, oleic acid, and lauric acid. However, some levels of palmidrol, beta-amyrin, cubenol, and tocopherol were also found in safflower extracts. Most of the volatile compounds were detected between 10–30 min time of extraction. The 30 min time of extraction also showed the maximum content of polyphenols and antioxidants in safflower extracts. Thus, 30 min was suggested as the most suitable time for maximum extraction of bioactive volatiles, antioxidants, and polyphenols from Safflower using propanol solvent.


1970 ◽  
Vol 42 (1) ◽  
pp. 75-78 ◽  
Author(s):  
M Mostafa ◽  
Momtaz Ahmed ◽  
Ismet Ara Jahan ◽  
Jasim Uddin Choudhury

The oil obtained from the seeds of Cassia sophera Linn was analyzed by GC-MS and a total of 42 compounds have been identified. The major constituents are palmitic acid (22.82 %), linoleic acid (8.32 %), elaidic acid (19.16 %), stearic acid (9.86 %), 5-isopropyl -6-methyl-3-heptyne-2,5-diol (6.44 %), undecyl lauric acid (6.61 %), oleic acid (2.1 %), arachidic acid (3.57 %) and 3α, 7β-dihyodxy -5β, 6β-epoxycholestane (5.9 %). Bangladesh J. Sci. Ind. Res. 42(1), 75-78, 2007


1980 ◽  
Vol 191 (2) ◽  
pp. 637-643 ◽  
Author(s):  
William W. Christie ◽  
Margaret L. Hunter

The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5683-5683
Author(s):  
Yasuyuki Nagata ◽  
Itsuko Ishizaki ◽  
Michihiko Waki ◽  
Yoshimi Ide ◽  
Md Amir Hossen ◽  
...  

Abstract Introduction Many recent studies have examined lipid metabolic changes in multiple myeloma (MM). Changes in lipid metabolism affect the survival of MM cells. Developments in imaging mass spectrometry (IMS) have facilitated research on the lipid profiles of tumors. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an IMS technique that uses a focused ion beam as the primary source for ionization. TOF-SIMS imaging is used to analyze the surface of specimens at sub-micrometer resolution, enabling analyses of the subcellular distribution of molecules in individual cells. TOF-SIMS analysis has enabled the detection of multiple fatty acid groups from single cells. Therefore, we applied this method to human clinical specimens to analyze the membrane fatty acid composition and determine candidate molecules for MM therapies. Using the different lipid profiles for MM cells and normal plasma cells (PCs), we conducted a cytocidal assay with MM cell lines supplemented with the fatty acids screened out by the profiles to assess lipotoxicity against MM. The molecules demonstrating distinct differences among cell types (i.e., MM and PC) were considered candidates for which supplementation leads to imbalanced lipid metabolism and cell death in a tumor-specific manner. We further evaluated the induction of apoptosis. Methods Primary patient MM cells and normal PCs were isolated from the bone marrow aspirates of two patients and two healthy volunteers using fluorescence-activated cell sorting. These separated cells were analyzed with PHI TRIFT V (ULVAC-PHI, Inc.). Analyses were performed in negative ion mode, and signals in the mass range of m/z 0 to 1850 were monitored. We performed pairwise comparisons of mean signal intensities for five types of fatty acids between MM cells and PCs. MM cell lines (U266 and RPMI-8226) were treated with 0–1000 µM of palmitic acid, palmitoleic acid, linoleic acid, oleic acid, and stearic acid. The number of viable cells in suspension at 72 hours after treatment was determined by the trypan blue exclusion test. HS-5, a human bone marrow stromal cell line, was used in the co-culture experiment. Healthy volunteers’ normal peripheral blood mononuclear cells (PBMCs) were purified by Ficoll-Hypaque density-gradient centrifugation. The distribution of apoptotic and necrotic cells were analyzed by measuring AnnexinV binding and propidium iodide uptake. Results The amounts of MM cells and PCs relative to the total nucleated cells were 3.38%, 35.9% for MM cells, 0.0368% and 0.246% for PCs. Multiple ions, including phosphoric acid, and five species of fatty acids (palmitoleic acid, palmitic acid, linoleic acid, oleic acid, and stearic acid) were detected. The mean signal intensities of palmitoleic acid and palmitic acid of MM cells were significantly lower than those of normal PCs (P = .00081 and .0018, respectively). These results were replicated in a second pairwise comparison. We did not observe statistically significant differences in intensities for linoleic acid, oleic acid, or stearic acid. In the cytocidal assay, palmitic acid reduced U266 cell viability dose-dependently for doses of 50–1000 μM. High concentrations of the other fatty acids also reduced cell viability; however, the effect on cell death was not observed at the low dose of 50–100 µM, as it was for palmitic acid. Even in co-culture experiments, palmitic acid decreased the viability of MM cells. Moreover, the proportions of both apoptotic and necrotic cells increased and the proportion of viable cells decreased 24 hours after palmitic acid treatment in MM cells. Palmitic acid also reduced the viability of RPMI-8226 cell lines. Meanwhile, cell viabilities of normal PBMCs were not affected by palmitic acid, even at 100–500 µM. Conclusion We applied the single-cell TOF-SIMS lipid analysis effectively to a very small population of cells. Significantly smaller intensities of palmitoleic acid and palmitic acid were observed in MM cells compared to normal cells. We also demonstrated an inhibitory effect of palmitic acid on the survival of MM cells. Palmitic acid is a potential candidate for novel therapeutic agents that specifically attack MM and should be considered in future studies of MM in a lipid biology framework. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Bernita Silaban

Background: "Siasia" is a seaworm species in the phylum that includes Sipuncula Sipunculidea class. This animal has been consumed for generations by coastal communities Nusalaut Island, central mollucas but not yet universally known. Until now there has been obtained gisi complete composition. This study aimed to identify the composition of fatty acids contained in vain fresh seaworms. Methods: Seaworms vain taken from coastal waters of Negeri Titawaai and Nalahia Nusalaut Island, Central Moluccas in March 2014. The parameters analyzed include methods is sokhlet fat content and fatty acid by GC method. Results: The results showed fresh siasia fat content 1.12% of coastal waters Titawaai while 1.91% of coastal waters Nalahia. Fatty acids seaworms were identified from coastal waters Titawai  is  kaparat acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18: 0), linolenic acid (C18: 3) acid and eicosapentaenoic (C20: 5) while the fatty acids of  seaworm vain of coastal waters Nalahia include is lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid ( C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3). Conclusion: The fat content of fresh siasia sea worms is 1.12% from the waters of Titawaai beach, while 1.91% of the waters of the coast of Nalahia.


2019 ◽  
Vol 44 (4) ◽  
pp. 382
Author(s):  
K. Kususiyah ◽  
U. Santoso ◽  
Y. Fenita ◽  
A. M. H. Putranto ◽  
S. Suharyanto

A factorial design was used to analyzethe influenceofSauropus androgynusleaf extract (SALE) and turmeric powder (TP) on fat deposition in broilers fed high-fat diet. The first factor was the source of fat (6% beef fat and 6% palm oil), and the second factor was SALE plus TP [0 g SALE plus 0 g TP (G1), 9 g SALE plus 0.5 g TP (G2), 18 g SALE plus 0.5 g TP (G3), 9 g SALE plus 1 g TP (G4), 18 g SALE plus 1 g TP (G5)]. SALE plus TP affected cholesterol,lauric acid, myristic acid, palmitic acid, stearic acid and eicosapentaenoic acid contents (p<0.01).Fat sources affected fat, cholesterol, lauric acid, myristic acid, palmitic acid, stearic acid and eicosapentaenoic acid (p<0.01). There was a significant interaction between the two factorson fat, cholesterol, lauric acid, palmitic acid, stearic acid, and eicosapentaenoic acid contents. In conclusion, 18 g SALE plus 1 g TP supplementation to high-fat diet resulted in lower stearic acid, but it resulted in higher eicosapentaenoic acid. Supplementation of SALEplus TPto a high-fat diet lowered cholesterol content and changed fatty acidscomposition.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Rashmi Kumari ◽  
Gopal Rao Mallavarapu ◽  
Vinod Kumar Jain ◽  
Sushil Kumar

Fatty oils of the seeds of Cleome viscosa accessions from Delhi, Jaipur, Faridabad, Surajkund and Hyderabad were methylated and analyzed by GC and GC-MS. The major fatty acids, identified as their methyl esters, of the oils from these five locations were palmitic acid (10.2-13.4%), stearic acid (7.2-10.2%), oleic acid (16.9-27.1%) and linoleic acid (47.0-61.1%). In addition, palmitoleic acid, octadec-(11 E)-enoicacid, arachidic acid, eicosa-(11 Z)-enoic acid, linolenic acid, heneicosanoic acid, behenic acid, lignoceric acid, pentacosanoic acid, hexacosanoic acid, 12-oxo-stearic acid, and the alkanes tetracosane, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triocontane, hentriacontane and dotriacontane, were also identified as minor and trace constituents in some of these oils.


Author(s):  
Vilcacundo E ◽  
Alvarez M ◽  
Silva M ◽  
Carpio C ◽  
Morales D ◽  
...  

 Objective: The aim of this study was to determine the fatty acids composition in a tocte seeds oil (Juglans neotropica Diels) sample cultivated in Ecuador.Methods: Tocte oil was obtained from tocte seeds using the cold pressing method. Fatty acids analysis was carried out using the gas chromatography method with a mass selective detector (GC/MSD) and using the database Library NIST14.L to identify the compounds.Results: Methyl esters fatty acids were identified from tocte (J. neotropica Diels) walnut using the GC–MS analytical method. The total lipid content of tocte walnuts seeds of plants cultivated in Ecuador was of 49.01% of the total lipid content on fresh weight. Fatty acids were analyzed as methyl esters on a capillary column DB-WAX 122-7062 with a good separation of palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. The structure of methyl esters fatty acids was determined using the GC–MS. Tocte walnut presents 5.05% of palmitic acid, 2.26% of stearic acid, 19.50% of oleic acid, 65.81% of linoleic acid, and 2.79% linolenic acid of the total content of fatty acids in tocte oil. Fatty acids content reported in this study were similar to the data reported for other walnuts seeds.Conclusions: Tocte seeds are a good source of monounsaturated and polyunsaturated fatty acids. Tocte oil content oleic acid and with a good content of ɷ6 α-linoleic and ɷ3 α-linolenic. Tocte walnut can help reduce risk cardiovascular diseases in Ecuador for their good composition of fatty acids.


Author(s):  
Bernita Br Silaban

Background: "Siasia" is a seaworm species in the phylum that includes Sipuncula Sipunculidea class. This animal has been consumed for generations by coastal communities Nusalaut Island, central mollucas but not yet universally known. Until now there has been obtained gisi complete composition. This study aimed to identify the composition of fatty acids contained in vain fresh seaworms. Method: Seaworms vain taken from coastal waters of Negeri Titawaai and Nalahia Nusalaut Island, Central Moluccas in March 2014. The parameters analyzed include methods is sokhlet fat content and fatty acid by GC method. Result: The results showed fresh siasia fat content 1.12% of coastal waters Titawaai while 1.91% of coastal waters Nalahia. Fatty acids seaworms were identified from coastal waters Titawai  is  kaparat acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18 : 0), linolenic acid (C18: 3) acid and eicosapentaenoic (C20: 5) while the fatty acids of  seaworm vain of coastal waters Nalahia include is lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid ( C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3). Conclusion: Siasia fatty acid from Titawai waters of the identified seven seas of each capsic acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1) , Stearic acid (C18: 0), linolenic acid (C18: 3) and eicosapentaenoic acid (C20: 5) whereas Siasia fatty acids from Nalahia's coastal waters were identified as five lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3).


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
M. H. Rachmawati ◽  
H. Soetjipto ◽  
A. Ign A. Ign. Kristijanto

Overripe tempe is a food product that used by peoples in Indonesia as a food seasoning. So far, overripe tempe received less attention than fresh tempe and research of overripe tempe is rarely done. The objective of the study is to identify the fatty acid compounds of the  fifth day fermentation overripe tempe oil before and after purification . The overripe tempe oil of fifth day fermentation was extracted with soxhletation method using n – hexane solvent, then it was purified. The various fatty acids  of overripe tempe oil were analyzed by GC – MS. The purification process was done by using H3PO4 0,2% and NaOH 0,1N. The result of the study showed that before purification the oil  was composed of eight compounds  are palmitic acid (13,33%),  linoleic acid (77,57%), stearic acid (6,15%), and the five chemical components, Dasycarpidan – 1 - methanol, acetate ,  oleic acid, 9 - Octadecenamide ,Cholestane - 3, 7, 12, 25 - tetrol, tetraacetate, (3?, 5?, 7?, 12?) and  6, 7 – Epoxypregn – 4 – ene -9, 11, 18- triol - 3, 20 - dione, 11, 18 – diacetate have percentage of areas less than 3%. After purification the oil  was composed of palmitic acid (12,38% ), linoleic acid (80,35 %), stearic acid (5,84%), and 17 – Octadecynoic acid (1,42 %) .


Sign in / Sign up

Export Citation Format

Share Document