Maintenance and regulation of DNA methylation patterns in mammals

2005 ◽  
Vol 83 (4) ◽  
pp. 438-448 ◽  
Author(s):  
Zhao-xia Chen ◽  
Arthur D Riggs

Proper establishment and faithful maintenance of epigenetic information is crucial for the correct development of complex organisms. For mammals, it is now accepted that DNA methylation is an important mechanism for establishing stable heritable epigenetic marks. The distribution of methylation in the genome is not random, and patterns of methylated and unmethylated DNA are well regulated during normal development. The molecular mechanisms by which methylation patterns are established and maintained are complex and just beginning to be understood. In this review, we summarize recent progress in understanding the regulation of mammalian DNA methylation patterns, with an emphasis on the emerging roles of several protein and possible RNA factors. We also revisit the stochastic model of maintenance methylation and discuss its implications for epigenetic fidelity and gene regulation.Key words: Epigenetics, epigenetic fidelity, DNA methyltransferase, DNA demethylase, gene regulation.

2009 ◽  
Vol 29 (19) ◽  
pp. 5366-5376 ◽  
Author(s):  
Shinwu Jeong ◽  
Gangning Liang ◽  
Shikhar Sharma ◽  
Joy C. Lin ◽  
Si Ho Choi ◽  
...  

ABSTRACT Proper DNA methylation patterns are essential for mammalian development and differentiation. DNA methyltransferases (DNMTs) primarily establish and maintain global DNA methylation patterns; however, the molecular mechanisms for the generation and inheritance of methylation patterns are still poorly understood. We used sucrose density gradients of nucleosomes prepared by partial and maximum micrococcal nuclease digestion, coupled with Western blot analysis to probe for the interactions between DNMTs and native nucleosomes. This method allows for analysis of the in vivo interactions between the chromatin modification enzymes and their actual nucleosomal substrates in the native state. We show that little free DNA methyltransferase 3A and 3B (DNMT3A/3B) exist in the nucleus and that almost all of the cellular contents of DNMT3A/3B, but not DNMT1, are strongly anchored to a subset of nucleosomes. This binding of DNMT3A/3B does not require the presence of other well-known chromatin-modifying enzymes or proteins, such as proliferating cell nuclear antigen, heterochromatin protein 1, methyl-CpG binding protein 2, Enhancer of Zeste homolog 2, histone deacetylase 1, and UHRF1, but it does require an intact nucleosomal structure. We also show that nucleosomes containing methylated SINE and LINE elements and CpG islands are the main sites of DNMT3A/3B binding. These data suggest that inheritance of DNA methylation requires cues from the chromatin component in addition to hemimethylation.


Author(s):  
S. Lewis ◽  
L. Ross ◽  
S.A. Bain ◽  
E. Pahita ◽  
S.A. Smith ◽  
...  

AbstractCytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. Remarkably the same set of genes are likely to be methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.Author SummaryAnimals develop from a single cell to form a complex organism with many specialised cells. Almost all of the fantastic variety of cells must have the same sequence of DNA, and yet they have distinct identities that are preserved even when they divide. This remarkable process is achieved by turning different sets of genes on or off in different types of cell using molecular mechanisms known as “epigenetic gene regulation”.Surprisingly, though all animals need epigenetic gene regulation, there is a huge diversity in the mechanisms that they use. Characterising and explaining this diversity is crucial in understanding the functions of epigenetic pathways, many of which have key roles in human disease. We studied how one particular type of epigenetic regulation, known as DNA methylation, has evolved within arthropods. Arthropods are an extraordinarily diverse group of animals ranging from horseshoe crabs to fruit flies. We discovered that the levels of DNA methylation and where it is found within the genome changes rapidly throughout arthropod evolution. Nevertheless, there are some features of DNA methylation that seem to be the same across most arthropods-in particular we found that there is a tendency for a similar set of genes to acquire methylation of DNA in most arthropods, and that this is conserved over 350 million years. We discovered that these genes have distinct features that might explain how methylation gets targeted. Our work provides important new insights into the evolution of DNA methylation and gives some new hints to its essential functions.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4681-4691 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Mehmet Uzumcu

Abstract Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-β, which was down-regulated, whereas ERα was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 μg/kg·d or 100 mg/kg·d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERα and ERβ genes in postnatal d 50–60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERβ promoter regions (P < 0.05), whereas the ERα promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shir Toubiana ◽  
Miriam Gagliardi ◽  
Mariarosaria Papa ◽  
Roberta Manco ◽  
Maty Tzukerman ◽  
...  

DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.


The Analyst ◽  
2016 ◽  
Vol 141 (2) ◽  
pp. 579-584 ◽  
Author(s):  
Weiting Zhang ◽  
Xiaolong Zu ◽  
Yanling Song ◽  
Zhi Zhu ◽  
Chaoyong James Yang

Abnormal DNA methylation patterns caused by altered DNA methyltransferase (MTase) activity are closely associated with cancer. Herein, using DNA adenine methylation methyltransferase (Dam MTase) as a model analyte, we designed an allosteric molecular beacon (aMB) for sensitive detection of Dam MTase activity.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jiantao Ma ◽  
Casey Rebholz ◽  
Kim Braun ◽  
Lindsay Reynolds ◽  
Stella Aslibekyan ◽  
...  

AbstractLeukocyte DNA methylation patterns associated with habitual diet may reveal molecular mechanisms involved in the pathogenesis of diet-related chronic diseases and highlight targets for prevention and treatment. We aimed to examine peripheral blood derived leukocyte DNA methylation signatures associated with diet quality. We meta-analyzed epigenome-wide associations between diet quality and DNA methylation levels at over 400,000 cytosine-guanine dinucleotides (CpGs). We conducted analysis primarily in 6,662 European ancestry (EA) participants and secondarily in a group additionally including 3,062 participants of non-European ancestry from five population-based cohort studies. DNA methylation profiles were measured in whole blood, CD4 + T-cells, or CD14 + monocytes. We used food frequency questionnaires to assess habitual intake and constructed two diet quality scores: the Mediterranean-style diet score (MDS) and Alternative Healthy Eating Index (AHEI). Our primary analysis identified 32 diet-associated CpGs, 12 CpGs for MDS and 24 CpGs for AHEI (at FDR < 0.05, corresponding p-values = 1.2×10-6 and 3.1×10-6, respectively) in EA participants. Four of these CpGs were associated with both MDS and AHEI. In addition, Mendelian randomization analysis indicated that seven diet-associated CpGs were causally linked to at least one of the CVD risk factors. For example, hypermethylation of cg11250194 (FADS2), which was associated with higher diet quality scores, was also associated with lower fasting triglycerides concentrations (p-value = 1.5×10-14) and higher high-density lipoprotein cholesterol concentrations (p-value = 1.7×10-8). Transethnic meta-analysis identified nine additional CpGs associated with diet quality (either MDS or AHEI) at FDR < 0.05. Overall quality of habitual diet was associated with differential peripheral leukocyte DNA methylation levels of 32 CpGs in EA participants. The diet-associated CpGs may serve as biomarkers and targets for preventive measures in CVD health. Future studies are warranted to examine diet-associated DNA methylation patterns in larger, ethnically diverse study samples.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1359 ◽  
Author(s):  
Chameera Ekanayake Weeramange ◽  
Kai Dun Tang ◽  
Sarju Vasani ◽  
Julian Langton-Lockton ◽  
Liz Kenny ◽  
...  

Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3442-3442
Author(s):  
Michael Getman ◽  
Samantha J England ◽  
James Palis ◽  
Laurie A Steiner

Abstract Abstract 3442 The maturation of a committed erythroid progenitor to a functional red blood cell is a complex process involving significant changes in gene expression during a time of rapid cell division and nuclear condensation. LSD1 (Lysine-Specific Histone Demethylase 1) is a histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) demethylase that plays pivotal role in this process. LSD1 participates in both enhancer and repressor complexes, and facilitates repression of γ-globin by participating in the Direct Repeat Erythroid Complex (Cui, MCB, 2011). LSD1 inhibitors Tranylcypromine (TCP) and Pargyline (PG) are being investigated as potential therapies for the β-globinopathies, however little is known about the broader functional or genomic consequences of LSD1 inhibition on terminal erythroid maturation. Both TCP and PG impair erythroid maturation in Extensively Self Renewing Erythroblasts (ESREs), a primary cell model of terminal erythroid maturation. ESREs are primary cells derived from fetal liver that proliferate extensively in culture, but retain the ability to appropriately mature and enucleate (England, Blood, 2011), making them ideal for functional and genomic studies of terminal erythroid maturation. In untreated or vehicle (DMSO) treated cultures >90% of cells are benzidine positive by day3 of maturation. In contrast, cultures treated with 400um PG, 1um TCP, or 2um TCP were 72, 42, and 33% benzidine positive by maturation day3, respectively. Cells in the TCP-and PG- treated cultures also had morphologic evidence of impaired maturation, with larger nuclei and more basophilic cytoplasm. In addition to its role as a histone demethylase, LSD1 stabilizes DNMT1 (DNA methyltransferase 1; Wang, Nat Genet 2009). We hypothesized that loss of DNA methylation contributes to the maturation impairment seen with LSD1 inhibitors, and that inhibition of DNMTs with decitabine would also impair terminal erythroid maturation. Consistent with this hypothesis, ESREs treated with decitabine demonstrated a dose-dependent impairment of maturation similar to that seen with PG and TCP. To elucidate the molecular mechanisms underlying the maturation impairment in TCP- and PG- treated cultures, levels of H3K4me2 and methylated DNA (5-methyl cytosine, 5-mC) were assessed both globally and at specific loci. An ELISA (Enzyme-linked Immunosorbent Assay) was used to assess global levels of H3K4me2 and 5-mC in vehicle-, PG-, and TCP-treated cultures after 24 hours of maturation. Global levels of H3K4me2 were significantly higher in PG- and TCP- treated samples than control. In maturing cells, there was no significant difference in the level of 5-mC in vehicle- and inhibitor- treated cultures. It is well established, however, that global DNA methylation decreases with erythroid maturation (Seashore, Science, 2011), and a significant decrease in 5-mC occurs in ESREs during the first 24hrs of maturation. As TCP- and vehicle- treated cultures mature differently, the effect of TCP on 5-mC levels was also assessed in self-renewing ESREs at the proerythroblast stage. Unlike maturing cells, TCP-treated proerythroblasts had a significant decrease in 5-mC levels compared to control. Chromatin immunoprecipitation (ChIP) was used to examine the local effects of LSD1 inhibition on H3K4me2 enrichment at erythroid-specific promoters. TCP-treated cultures had non-uniform changes in H3K4me2 enrichment, with levels increased at some promoters (e.g. protein 4.1,εy-globin), but unchanged at others (e.g. β-globin). To further study the relationship between LSD1 inhibition and H3K4me2 levels, ChIP-seq was used to identify LSD1 sites that co-localized with putative enhancers, defined as peaks of H3K4me2 binding > than 1kb from a transcription start site. ChIP-qPCR was used to compare the level of H3K4me2 at 5 validated enhancer-associated LSD1 sites in vehicle- and TCP-treated cells. The effect of TCP was variable, with only 2/5 enhancer-associated LSD1 sites having increased H3K4me2. Lastly, the local effects of inhibitors on 5-mC were examined using a methyl binding domain pulldown coupled with qPCR. In TCP-treated cells, 5-mC levels declined at several loci, most notably at the εy-globin promoter. Taken together, these results suggest that the impaired erythroid maturation associated with LSD1 inhibition results from the perturbation of multiple mechanisms of epigenetic regulation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document