In vivo preparation of [32P]cAMP and thin-layer chromatography of cAMP-related compounds

1979 ◽  
Vol 57 (11) ◽  
pp. 1281-1283
Author(s):  
Hiroshi Yamazaki ◽  
Kwok-Luen Leung ◽  
Ann D. E. Feaser

A simple and rapid method for preparing [32P]adenosine 3′,5′-cyclic monophosphate (cAMP) is described. A culture of an Escherichia coli mutant which excretes cAMP about 150 times faster than does a wild-type strain was incubated overnight with [82P]orthophosphate of high specific activity (e.g., 4000 Ci/mol (1 Ci = 37 GBq)). The [32P]cAMP which accumulated extracellularly was then purified to 99.9% radiochemical purity in less than 4 h by adsorption to charcoal and alumina column chromatography. A two-dimensional chromatography system using a PEI-cellulose plate is also described which should prove useful for studying cAMP metabolism with 32P- or 3H-labeled cAMP or ATP.

Author(s):  
Sean S. Tanzey ◽  
Xia Shao ◽  
Jenelle Stauff ◽  
Janna Arteaga ◽  
Phillip Sherman ◽  
...  

Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases and, in this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high specific activity. Preliminary PET imaging with [11C]AZ683 revealed no brain uptake in rodents and nonhuman primates suggesting that [11C]AZ683 is a poor candidate for imaging neuroinflammation, but that it could still be useful for peripheral imaging of inflammation.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2021 ◽  
Author(s):  
Moataz Dowaidar

Gastric cancer is the world's second-largest death cause. Developing suitable medical therapies can help individuals live longer. So far, GC treatment has depended on several pharmaceutical techniques. Chemotherapy and surgery are GC patients' most frequent treatment choices. The most major hurdles to effective GC therapy are chemotherapeutic resistance and non-selective targeting. Recent GC-targeted therapeutic research has focused on building more selective and effective anti-GC pharmacological approaches. Because molecular focused therapy can greatly exacerbate the current inefficacy of normal GC therapy procedures, peptide base synthesis can be used as a carrier to deliver radiation or other fatal chemicals to tumor locations with precise protein overexpression. Different types of peptides with special binding affinity to GC overexpressed receptors have been identified for targeted therapy and imaging. Although some of these peptides have excellent GC targeting ability, they also need great GC penetration capacity and no systemic in vivo toxicity before they can be employed in clinical studies. One of these peptides' most notable limitations is their short plasma half-life, limiting their efficient delivery to tumor locations. Sluggish binding pharmacokinetics, along with in vivo instability, can produce targeted treatment failure. Using an appropriate modification strategy to boost blood circulation time may be advantageous.The key to producing successful, innovative anti-cancer targeting drugs with specific targeting capabilities is to mark the peptide with distinct diagnostic and therapeutic radioisotopes. Although a peptide's radiolabeling or enzymatic degradation may not affect its targeting capabilities, the radiation dose delivery impact on it is obvious. Selecting an appropriate type of radionuclide to achieve high-specific activity, using a simple and high-efficiency radiolabeling process, and selecting an adequate spacer and chelator to manage peptide biodistribution are all important considerations when designing a peptide-based radiopharmaceutical. High internalization and significant systemic circulation washout are other essential tumor targeting needs. Many of the peptides described in this work lack these critical features. The radiolabeled peptide should also remain intact and have a short blood washout period, allowing targeted imaging and therapy. SPECT and PET are the most extensively used technologies in nuclear medicine. Although PET has a greater resolution, SPECT technology gives a comparable sensitivity at a lesser cost. Combining fast binding pharmacokinetics with suitable stability in vivo can result in efficient tumor contrast. Non-target liver and kidney accumulation is required when employing radiolabeled peptides to target GC. When a radiolabeled peptide accumulates more in the liver and intestine than in the GC tumor, the image quality degrades. However, using the proper chelator and spacer can assist decrease non-target accumulation in the kidneys. Finally, considering all these conditions and being positive, it is conceivable to produce a unique peptide with avid binding to GC cells.


1993 ◽  
Vol 75 (2) ◽  
pp. 559-565 ◽  
Author(s):  
J. Ueki ◽  
C. G. Rhodes ◽  
J. M. Hughes ◽  
R. De Silva ◽  
D. C. Lefroy ◽  
...  

The in vivo regional distribution of pulmonary beta-adrenoceptors was imaged and quantified in humans with the hydrophilic beta-adrenoceptor antagonist (S)-CGP-12177 labeled with carbon-11 [(S)-[11C]CGP-12177] and positron emission tomography (PET). Six normal male volunteers and eight patients with hypertrophic cardiomyopathy were studied. PET scanning consisted of transmission (tissue density), C15O (blood volume), and (S)-[11C]CGP-12177 (beta-adrenoceptor) emission scans. High-specific-activity (S)-[11C]-CGP-12177 (7.1 +/- 2.0 micrograms, 6.5 +/- 2.1 GBq/mumol) was given intravenously followed by a low-specific-activity (S)-[11C]CGP-12177 injection (34.0 +/- 4.8 micrograms, 2.3 +/- 0.8 GBq/mumol). Binding capacity (Bmax) was calculated in each region of interest as picomoles per gram by normalizing it to the local extravascular tissue density. In normal subjects, average Bmax for all regions of interest was 14.8 +/- 1.6 (SD) pmol/g, which is similar to previously reported in vitro values. In both groups there were no differences in beta-adrenoceptor density between peripheral and central regions nor between right and left lungs. In patients with hypertrophic cardiomyopathy, extravascular tissue density was 24% higher than in normal subjects; Bmax per milliliter thoracic volume was correspondingly higher but was not different from that in normal subjects when expressed per gram tissue (15.8 +/- 2.6 pmol/g). These data suggest that in vivo beta-adrenoceptor density may be quantifiable in humans with the use of PET. This should offer a means to study physiological regulation through repeat measurements.


2010 ◽  
Vol 192 (18) ◽  
pp. 4776-4785 ◽  
Author(s):  
Rabeb Dhouib ◽  
Françoise Laval ◽  
Frédéric Carrière ◽  
Mamadou Daffé ◽  
Stéphane Canaan

ABSTRACT MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.


Blood ◽  
1990 ◽  
Vol 75 (9) ◽  
pp. 1788-1793 ◽  
Author(s):  
M Okabe ◽  
M Asano ◽  
T Kuga ◽  
Y Komatsu ◽  
M Yamasaki ◽  
...  

About 100 derivatives of human recombinant granulocyte colony- stimulating factor (rhG-CSF) were created by various gene-mutagenic techniques, and KW-2228, in which amino acids were replaced at five positions of N-terminal region of intact rhG-CSF, was picked up and evaluated for its biologic and physicochemical properties in comparison with intact rhG-CSF. KW-2228 showed two to four times higher specific activity than that of intact rhG-CSF in mouse and/or human bone marrow progenitor cells by colony-forming unit assay in soft agar, and by cell- proliferation assay in liquid culture. KW-2228 showed a potency to increase peripheral neutrophil counts when it was administered to normal C3H/He mice by single intravenous injection. Increase of total leukocyte count and neutrophils was observed, with peak level at 8 to 12 hours at low doses (0.5 to 1.0 micrograms/mouse), and the highest level was maintained for 24 to 30 hours at high doses (5 to 10 micrograms/mouse). The granulopoietic effect of KW-2228 was examined by several doses of single course (once daily for 10 days) or multiple courses (twice daily injection for 5 days followed by cessation for 9 days on one cycle, 3 cycles in total) of treatment. KW-2228 showed higher activity than that of rhG-CSF, especially at sub-optimal doses of multiple courses of treatment. Furthermore, KW-2228 was found to be more stable physicochemically and biologically than intact rhG-CSF, especially under thermal conditions at 56 degrees C and in the human plasma at 37 degrees C, suggesting a protease resistancy. Pharmacokinetic study showed that plasma concentration of KW-2228 assayed for its bioactivity maintained a higher level than that of intact rhG-CSF for 60 minutes after intravenous injection of this protein to normal mice. Those results suggest that KW-2228 might show a superior in vivo hematopoietic effect to intact rhG-CSF due to its high specific activity to progenitor cells, and also due to its improved physicochemical, biologic, and pharmacokinetic stability in host animals.


1975 ◽  
Vol 28 (9) ◽  
pp. 1981 ◽  
Author(s):  
DHT Fong ◽  
CL Bodkin ◽  
MA Long ◽  
JL Garnett

The stereochemistry of the tritiation of L-chiro-inositol, myo-inositol and hexa-O-methyl-L-chiro-inositol by self-radiation induced exchange with tritiated water of high specific activity has been investigated. Predominance of configurational retention was found to accompany tritium labelling in the two inositols, while substantial configurational inversion occurred in the hexa-O-methyl derivative. Tritiation occurred predominantly at C 1 in L-chiro-inositol, with slight inversion at this position alone accompanying the labelling. Comparison with Wilzbach T2 gas exposure results indicates the HTO method yields less by-products, myo-inositol having a radiochemical purity of 97%.


Blood ◽  
1967 ◽  
Vol 29 (4) ◽  
pp. 517-525 ◽  
Author(s):  
HENRY GANS ◽  
JAMES MC LEOD ◽  
JAMES T. LOWMAN

Abstract The fact that in vitro labeled proteins, as a rule, exhibit faster turnover rates than in vivo labeled materials led us to explore means of obtaining in vivo labeled fibrinogen of high specific activity. It was found that defibrination of the rat provides a stimulus for the liver to regenerate fibrinogen at an accelerated rate. Administration of seleno75 methionine shortly after thrombin-induced defibrination of the animal resulted in the incorporation of large quantities of the label. The rate of incorporation was further increased if the amino acid was administered as a slow infusion during the entire period of fibrinogen regeneration. In addition, prior nephrectomy of the animal would appear to result in a slight increase in specific activity of the fibrinogen preparation obtained. The results of these studies indicate that defibrination, nephrectomy, and the prolonged infusion of the labeled amino acid selenomethionine provided us with a technic for obtaining a biosynthetically labeled, γ-emitting, fibrinogen preparation of high specific activity.


1975 ◽  
Vol 53 (6) ◽  
pp. 698-705 ◽  
Author(s):  
J. G. Parkes ◽  
W. Thompson

Phosphatidylethanolamine from mitochondria and microsomes of guinea pig liver was separated by thin-layer chromatography into eight different classes differing in degree of unsaturation. The fatty acid compositions and molar proportions of each class isolated from microsomes were very similar to the corresponding class in mitochondria. In both organelles about half of the total was dienoic species while tetraenes comprised approximately 20%. Stearic acid was the major saturated fatty acid and in each membrane a greater selectivity for stearate over palmitate was found in each sub-class of phosphatidylethanolamine, when compared with the corresponding class of phosphatidylcholine.Following the intraperitoneal injection of [2-3H]glycerol, the labelling of each molecular class of phosphatidylethanolamine showed very similar progressions in microsomes and mitochondria over a 3 h interval. In both organelles the highest relative specific activity was attained by penta-plus hexaenoic classes, while the large dienoic class had the lowest relative activity, which, however, increased with time. Analysis of the dienoic class of phosphatidylethanolamine from whole liver showed it to be constituted by a rapidly turning over palmitoyl–linoleoyl fraction and a slowly labelled stearoyl–linoleoyl fraction, a pattern also exhibited by dienoic phosphatidylcholines.The similarities in profile of molecular classes of phosphatidylethanolamine and in the kinetics of labelling in vivo point to a close metabolic relation between the lipids of both organelles, suggestive of a transfer of different molecular classes at comparable rates from the endoplasmic reticulum, the site of synthesis, to the mitochondria. This is consistent with numerous other studies in vitro that have demonstrated inter-organelle exchange of lipids.


1985 ◽  
Vol 249 (1) ◽  
pp. E77-E88 ◽  
Author(s):  
K. C. Weiss ◽  
M. C. Linder

The time course of distribution of high-specific activity 67CuCl2 to tissues and plasma components was followed in adult, female rats. Immediately after intubation or injection, tracer 67Cu associated with two components of the blood plasma separable on columns of Sephadex G-150: albumin and another (larger) component, which was not ceruloplasmin. The latter, tentatively named transcuprein, had an apparent molecular weight of 270,000 and a high affinity for Cu2+, as judged by processing through Chelex-100, dilution, and exchange with albumin copper, in vitro and in vivo. It was capable of donating copper to tumor cells in serum-free medium. Analysis of "cold" plasma by furnace atomic absorption confirmed the presence of 10-15% of plasma copper in this peak. Plots of percent dose and 67Cu specific activity against time showed that copper followed a very specific pathway after binding to albumin and transcuprein, entering mainly the liver, then reappearing in the plasma on ceruloplasmin, and then achieving peak distribution in peripheral tissues (muscles, brain, etc.). 67Cu disappeared from liver and kidney with an apparent half-life of 4.5 days, the same exponential rate found for whole body turnover. Apparent turnover of ceruloplasmin copper was more rapid. Even after 7-12 days, tracer copper in plasma was still found exclusively with ceruloplasmin. The results indicate that copper follows a carefully prescribed path, on entering the blood and binding to a new transport protein.


Sign in / Sign up

Export Citation Format

Share Document