Regulation of ethanolamine and choline phosphatide biosynthesis in isolated rat intestinal villus cells

1980 ◽  
Vol 58 (7) ◽  
pp. 527-533 ◽  
Author(s):  
P. J. A. O'Doherty

The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentration of CDP-ethanolamine and the incorporation of radioactivity into phosphatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.

2014 ◽  
pp. 67-73
Author(s):  
Ágnes Süli ◽  
Béla Béri ◽  
János Csapó ◽  
Éva Vargáné Visi

The efforts to modify the fatty acid composition of milk have intensified with health conscious nutrition coming to the forefront.This experiment of ours was designed to investigate to what extent the natural-based feed additives, such as oilseeds, can influence the fatty acid composition of cow’s milk.Further information was gained about feeding of oilseeds in specific amounts to be fitted into the technology of a large-scale dairy farm in practice. The feed supplements were whole, untreated rapeseed and whole, untreated linseed, as part of a total mixed ration. In case of saturated fatty acids when supplementing with whole rapeseed the most significant change was observable in the concentration of the caprylic acid, capric acid, undecylic acid, lauric acid, myristic acid, stearic acid. In case of unsaturated fatty acids the quantity of oleic acid enhanced considerably. When observating the feeding with whole linseed the concentration of many saturated fatty acids lowered (caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid). The quantity of some unsaturated fatty acids was showing a distinct rise after feeding with linseed, this way the oleic acid, α-linolenic acid, conjugated linoleic acid, eicosadienoic acid. The aim of the study was to produce food which meets the changed demands of customers, as well.


2020 ◽  
Vol 82 (6) ◽  
pp. 71-78
Author(s):  
Zita Letviany Sarungallo ◽  
Budi Santoso ◽  
Risma Uli Situngkir ◽  
Mathelda Kurniaty Roreng ◽  
Meike Meilan Lisangan

Refining of crude red fruit oil (CRFO) through the degumming and neutralization steps intended to produce oil free of impurities (non triglycerides) such as phospholipids, proteins, residues and carbohydrates, and also reducing the amount of free fatty acids (FFA). This study aims to determine the effect of red fruit oil purification through degumming and neutralization stages on chemical properties, fatty acid composition, carotenoid content and tocopherol of red fruit oil (RFO). The results showed that degumming of CRFO did not affect the decrease in water content, FFA levels, peroxide numbers, iodine values, carotenoids and tocopherols content; but decrease in levels of phosphorus, β-carotene and α-tocopherol. Neutralization of degummed-RFO (DRFO) did not affect the decrease in water content, iodine value, carotenoid, tocopherol and α-tocopherol; but the FFA levels, peroxide number, phosphorus and β-carotene levels decreased significantly. The fatty acid composition of RFO was dominated by unsaturated fatty acids (± 75%), which increases through degumming and neutralization stages. β-carotene is more sensitive than α-tocopherol during refining process of crude oil, but in general, this process can improve the RFO quality.


Author(s):  
Syamsul RAHMAN ◽  
Salengke Salengke ◽  
Abu Bakar TAWALI ◽  
Meta MAHENDRADATTA

Palado (Aglaia sp) is a plant that grows wild in the forest around Mamuju regency of West Sulawesi, Indonesia. This plant is locally known as palado. Palado seeds (Aglaia sp) can be used as a source of vegetable oil because it contains approximately 14.75 % oil, and it has the potential to be used as food ingredients or as raw material for oil production. The purpose of this study was to determine the chemical properties and the composition of fatty acids contained in palado seed oil (Aglaia sp). The employed method involved the use of palado fruit that had been processed to be palado seed and undergoing flouring process. Palado flour was produced by the extraction process by using chloroform solvent with the soxhlet method. The characteristics of the chemical properties in the oil produced were analyzed by using a standard method, including iodine, saponification, and acid values. The analysis of fatty acid composition was conducted by using gas chromatography. The results showed that palado oil extracted with hexane had an iodine value of 15.38 mg/g, saponification value of 190.01 mg KOH/g, and acids value of 1.961 mg KOH/g. The fatty acid composition of the palado seed oil consisted of saturated fatty acids (41.601 %), which included palmitic acid (41.062 %), myristic acid (0.539 %), and unsaturated fatty acids (45.949 %), which included mono-unsaturated fatty acids (MUFA) such as (22.929 %), oleic acid and poly-unsaturated fatty acids (PUFA), which was linoleic acid (23.020 %).


Pharmacia ◽  
2019 ◽  
Vol 66 (4) ◽  
pp. 201-207 ◽  
Author(s):  
Olena O. Iosypenko ◽  
Viktoriia S. Kyslychenko ◽  
Zinaida I. Omelchenko ◽  
Iryna S. Burlaka

The qualitative composition and quantitative content of fatty acids in leaves of vegetable marrows (Cucurbita pepo L. var. giromontina Alef.), zucchini (Cucurbita pepo L. var. cylindrica Paris) yellow- and green-fruits varieties were determined by using GC/MS. 14 fatty acids were identified as the result of the experiment. Unsaturated fatty acids were found to be dominated in the raw plant material. The total content of unsaturated fatty acids amounted to 60.47% in vegetable marrows leaves, 64.35% yellow zucchini leaves and 68.85% green zucchini leaves, among which linoleic and linolenic acid dominated. The related health lipid indices (IA, atherogenicity, IT, thrombogenicity and IH, health) were determined. It is shown that the use of such biological resources is actual and expedient for the purpose of alimentary correction of the physiological condition of a person.


1972 ◽  
Vol 71 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Knut Kirkeby

ABSTRACT The fatty acid composition of cholesterol esters, phospholipids, and triglycerides of the serum has been studied in groups of hyperthyroid and hypothyroid women and also in control material matched for age. In hyperthyroidism, a decrease in the proportions of linoleic acid and an increase in the proportions of some saturated and mono-unsaturated fatty acids were observed. When absolute concentrations were considered, it appeared that the decrease in linoleic acid was almost equivalent to the entire decrease in total fatty acids in the serum of the hyperthyroid patients. In hypothyroidism no changes were noted in the proportions of linoleic, saturated and mono-unsaturated fatty acids, and the absolute concentrations reflected the general increase in serum lipids. It is believed that these findings may be explained by the changes in lipid turnover which are known to occur in disturbances of thyroid function. In hyperthyroidism, they lead to a linoleic acid deficiency, while a sparing effect must be operating in hypothyroidism. The finding of relatively high linoleic acid values combined with hyperlipaemia in hypothyroidism seems to be characteristic of the condition, since other types of hyperlipaemia are almost invariably combined with low percentages of linoleic acid. Results regarding arachidonic and eicosatrienoic acid are consistent with increased synthesis in hyperthyroidism, and decreased synthesis in hypothyroidism.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1186 ◽  
Author(s):  
Ibrahim A. A. Mohamed ◽  
Nesma Shalby ◽  
Ali M. A. El-Badri ◽  
Muhammad Hamzah Saleem ◽  
Mohammad Nauman Khan ◽  
...  

Salinity stress is a limiting factor for the growth and yield quality of rapeseed. The potentiality of melatonin (MT; 0, 25, 50, and 100 µM) application as a seed priming agent in mediating K+/Na+ homeostasis and preventing the salinity stress mediated oxidative damage and photosynthetic inhibition was studied in two rapeseed cultivars. We found that 50 µM MT treatment imparted a very prominent impact on growth, metabolism of antioxidants, photosynthesis, osmolytes, secondary metabolites, yield, and fatty acids composition. Days required for appearance of first flower and 50% flowering were decreased by MT application. Exogenous MT treatment effectively decreased the oxidative damage by significantly declining the generation of superoxide and hydrogen peroxide under saline and non-saline conditions, as reflected in lowered lipid peroxidation, heightened membrane stability, and up-regulation of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). Furthermore, MT application enhanced the chlorophyll content, photosynthetic rate, relative water content, K+/Na+ homeostasis, soluble sugars, and proline content. Moreover, MT application obviously improved the oil quality of rapeseed cultivars by reducing glucosinolates, saturated fatty acids (palmitic and arachidic acids), and enhancing unsaturated fatty acids (linolenic and oleic acids except erucic acid were reduced). Yield related-traits such as silique traits, seed yield per plant, 1000 seeds weight, seed oil content, and yield biomass traits were enhanced by MT application. The anatomical analysis of leaf and stem showed that stomatal and xylem vessels traits are associated with sodium chloride tolerance, yield, and seed fatty acid composition. These results suggest the supportive role of MT on the quality and quantity of rapeseed oil yield.


2020 ◽  
Vol 241 ◽  
pp. 104249
Author(s):  
Małgorzata Białek ◽  
Marian Czauderna ◽  
Wiesław Przybylski ◽  
Danuta Jaworska

1981 ◽  
Author(s):  
M L McKean ◽  
J B Smith ◽  
M J Silver

The fatty acid composition of cell membrane phospholipids does not remain constant after de novo biosynthesis, but undergoes continual remodelling. One of the major routes for remodelling probably includes the deacylation-reacylation steps of the Lands Pathway. This has been shown to be important for the incorporation of long chain, polyunsaturated fatty acids into phospholipids by liver and brain. An understanding of the mechanisms involved in these processes in platelets is especially important in light of the large stores of arachidonic acid (AA) in platelet phospholipids and the role of AA in hemostasis and thrombosis. Previous results from this laboratory have shown that the turnover of radioactive AA, 8,11,14-eicosatrienoic and 5,8,11,14,17-eicosapentaenoic acids in the phospholipids of resting platelets is more rapid than the turnover of radioactive C16 and C18 saturated and unsaturated fatty acids. However, little is known about how fatty acids, especially AA and its homologues, are incorporated into platelet phospholipids during de novo biosynthesis or how they are exchanged during remodelling.At least three enzymes are involved in the deacylation- reacylation of phospholipids: phospholipase A2; acyl CoA synthetase; and acyl CoA transferase. We have studied acyl CoA transferase and have found considerable activity in human platelet membranes. Experiments are in progress to determine the substrate specificity and other properties of this enzyme.


Sign in / Sign up

Export Citation Format

Share Document