Actin and tubulin in Tetrahymena

1985 ◽  
Vol 63 (6) ◽  
pp. 389-396 ◽  
Author(s):  
E. Jane Mitchell ◽  
Selma Zimmerman ◽  
Arthur M. Zimmerman

Tubulin and actin are cytoskeletal proteins known to play a major role in dividing cells. Tetrahymena pyriformis, a ciliated protozoan, was used as a model system for investigating tubulin synthesis during cilia regeneration and during the cell cycle. Until recently the identification of actin in Tetrahymena has been controversial. In this report evidence for the presence of actin in Tetrahymena is reviewed and control of actin gene expression during the cell cycle is discussed.

FEBS Letters ◽  
1983 ◽  
Vol 164 (2) ◽  
pp. 318-322 ◽  
Author(s):  
A.M. Zimmerman ◽  
S. Zimmerman ◽  
J. Thomas ◽  
I. Ginzburg

1975 ◽  
Vol 67 (3) ◽  
pp. 518-522 ◽  
Author(s):  
I L Cameron ◽  
N C Bols

The ciliated protozoan, Tetrahymena pyriformis strain GL-C, has been used to study the effect of cell population density during starvation on the synchrony obtained after refeeding and on the number of cells arrested in G2 phase of the cell cycle. At high cell densities two peaks of division indices were observed after refeeding while only one was observed at low cell densities. Cell division began earlier in cultures starved at high cell densities. Most importantly, the proportion of cells in G2 was considerably higher in populations starved at high cell densities. When tritiated thymidine was present during the refeeding period, radioautographs of cell samples at different times showed that the first cells to exhibit division furrows contained unlabeled nuclei. The first peak in the division index after refeeding was observed only at higher cell densities and is attributed to the cells arrested in G2. These results suggest that Tetrahymena is an excellent organism to study the concept of resting stages in the cell cycle and their control.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Prashanth R Rao ◽  
Li Lin ◽  
Hai Huang ◽  
Arjun Guha ◽  
Sougata Roy ◽  
...  

The Drosophila tracheal system is a branched tubular network that forms in the embryo by a post-mitotic program of morphogenesis. In third instar larvae (L3), cells constituting the second tracheal metamere (Tr2) reenter the cell cycle. Clonal analysis of L3 Tr2 revealed that dividing cells in the dorsal trunk, dorsal branch and transverse connective branches respect lineage restriction boundaries near branch junctions. These boundaries corresponded to domains of gene expression, for example where cells expressing Spalt, Delta and Serrate in the dorsal trunk meet vein–expressing cells in the dorsal branch or transverse connective. Notch signaling was activated to one side of these borders and was required for the identity, specializations and segregation of border cells. These findings suggest that Tr2 is comprised of developmental compartments and that developmental compartments are an organizational feature relevant to branched tubular networks.


2020 ◽  
pp. 848-859
Author(s):  
Max Klebe ◽  
Carlo Fremd ◽  
Mark Kriegsmann ◽  
Katharina Kriegsmann ◽  
Thomas Albrecht ◽  
...  

PURPOSE Conversion of tumor subtype frequently occurs in the course of metastatic breast cancer but is a poorly understood phenomenon. This study aims to compare molecular subtypes with subsequent lung or pleural metastasis. PATIENTS AND METHODS In a cohort of 57 patients with breast cancer and lung or pleural metastasis (BCLPM), we investigated paired primary and metastatic tissues for differential gene expression of 269 breast cancer genes. The PAM50 classifier was applied to identify intrinsic subtypes, and differential gene expression and cluster analysis were used to further characterize subtypes and tumors with subtype conversion. RESULTS In primary breast cancer, the most frequent molecular subtype was luminal A (lumA; 49.1%); it was luminal B (lumB) in BCLPM (38.6%). Subtype conversion occurred predominantly in lumA breast cancers compared with other molecular subtypes (57.1% v 27.6%). In lumA cancers, 62 genes were identified with differential expression in metastatic versus primary disease, compared with only 10 differentially expressed genes in lumB, human epidermal growth factor receptor 2 (HER2)–enriched, and basal subtypes combined. Gene expression changes in lumA cancers affected not only the repression of the estrogen receptor pathway and cell cycle–related genes but also the WNT pathway, proteinases ( MME, MMP11), and motility-associated cytoskeletal proteins (CK5, CK14, CK17). Subtype-switched lumA cancers were further characterized by cell proliferation and cell cycle checkpoint gene upregulation and dysregulation of the p53 pathway. This involved 83 notable gene expression changes. CONCLUSION Our results indicate that gene expression changes and subsequent subtype conversion occur on a large scale in metastatic luminal A–type breast cancer compared with other molecular subtypes. This underlines the significance of molecular changes in metastatic disease, especially in tumors of initially low aggressive potential.


1984 ◽  
pp. 107-114
Author(s):  
S. Zimmerman ◽  
A. M. Zimmerman ◽  
J. Thomas ◽  
I. Ginzburg

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1097A-1097
Author(s):  
Anish Malladi ◽  
Peter Goldsbrough ◽  
Peter Hirst

Fruit development in apple cultivars varying in their ultimate fruit size was analyzed using cytology, flow cytometry (FCM), and semi-quantitative RT-PCR. Fruit size variation across cultivars was largely explained by variation in cell number. The cell division phase lasted for less than 30 days in all varieties, less than previously believed. A distinct overlap between the cell division and cell expansion phases was present. Analysis of the relative cell production rate (rCPR) showed a major peak about 10 days after full bloom (DAFB) after which it declined. Comparison of the rCPR across varieties suggested distinct patterns of cell production with `Gala' having a low but sustained rCPR, `Pixy Crunch' a short but high rCPR, and `Golden Delicious' having a high and sustained rCPR. FCM analysis also showed similar patterns with a peak in the proportion of dividing cells about 10 DAFB followed by a decline. To further understand regulation of cell number, four cell cycle related genes were cloned from `Gala'. Cyclin Dependent Kinase B (CDK B) and Cyclin B were found to be highly cell division phase specific in their expression. Analysis of gene expression by semi-quantitative RT-PCR indicated peak expression of these two genes at 5-10 DAFB, consistent with the peaks in rCPR and proportion of dividing cells. Comparison of gene expression across the varieties showed higher peak expression of the above genes in the larger-fruited `Golden Delicious' than in the smaller-fruited `Gala.' This study provides novel insight into the regulation of fruit development in apple and also suggests a role for the cell cycle genes in fruit size regulation.


2019 ◽  
Author(s):  
Philip Bittihn ◽  
Andriy Didovyk ◽  
Lev S. Tsimring ◽  
Jeff Hasty

AbstractRapid advances in cellular engineering1,2have positioned synthetic biology to address therapeutic3,4and industrial5problems, but a significant obstacle is the myriad of unanticipated cellular responses in heterogeneous environments such as the gut6,7, solid tumors8,9, bioreactors10or soil11. Complex interactions between the environment and cells often arise through non-uniform nutrient availability, which can generatebidirectionalcoupling as cells both adjust to and modify their local environment through different growth phenotypes across a colony.12,13While spatial sensing14and gene expression patterns15–17have been explored under homogeneous conditions, the mutual interaction between gene circuits, growth phenotype, and the environment remains a challenge for synthetic biology. Here, we design gene circuits which sense and control spatiotemporal phenotype patterns in a model system of heterogeneous microcolonies containing both growing and dormant bacteria. We implement pattern control by coupling different downstream modules to a tunable sensor module that leveragesE. coli⁉sstress response and is activated upon growth arrest. One is an actuator module that slows growth and thereby creates an environmental negative feedback via nutrient diffusion. We build a computational model of this system to understand the interplay between gene regulation, population dynamics, and chemical transport, which predicts oscillations in both growth and gene expression. Experimentally, this circuit indeed generates robust cycling between growth and dormancy in the interior of the colony. We also use the stress sensor to drive an inducible gating module that enables selective gene expression in non-dividing cells. The ‘stress-gated lysis circuit’ derived from this module radically alters the growth pattern through elimination of the dormant phenotype upon a chemical cue. Our results establish a strategy to leverage and control the presence of distinct microbial growth phenotypes for synthetic biology applications in complex environments.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2962-2962
Author(s):  
Susan M. Graham ◽  
Gerry J. Graham ◽  
Tessa L. Holyoake

Abstract Earlier studies have shown that Ph+ quiescent cells exist in chronic myeloid leukaemia (CML) (Blood (1999)94:2056) and we have previously shown that these cells are primitive in that they express the stem cell marker CD34. We have also shown that quiescent CML stem cells are insensitive to the effects of imatinib (IM Novartis Pharma) (Blood (2002) 99:319) and may present a possible source for relapse. This quiescent population therefore represents a potentially significant clinical problem and thus studies aimed at developing methods for eradicating this population are timely. In an effort to identify molecular markers of this population that may allow it to be specifically targeted during therapy, we have set out to investigate the transcriptional differences between quiescent and cycling stem cells. To this end, we have used specific stem cell enrichment and sorting protocols. Leukapheresis products from CML patients (N=5) in chronic phase at diagnosis and mobilised peripheral blood from allogeneic donors (N=3), were selected for CD34+ cells. Hoechst 33342 and Pyronin Y were used to discriminate the quiescent (G0) cells identified as Hoechstlo/Pyroninlo from the cycling cells. In combination with propidium iodide for dead cell exclusion we were able to sort 4–9x105 viable, quiescent stem cells and 4–11x106 cycling cells, which were processed for microarrays. Affymetrix gene chips (U133A) were used for the analysis and the data obtained was analysed using GeneSpring. Number of Genes Changed in Each Comparison 3 Fold 4 Fold 5 Fold CML G0 V CML Div 37 21 10 Norm G0 V Norm Div 188 92 47 CML G0 V Norm G0 168 85 49 CML Div V Norm Div 49 27 8 Initial analysis indicates that the greatest differences in gene expression are between the normal quiescent cells (G0) and normal dividing cells (Div) and between the normal quiescent cells and CML quiescent cells. A large percentage of the genes differentially expressed between the quiescent and cycling normal cells encode regulators of the cell cycle confirming the success of the sorting strategy for quiescent and cycling cells A selection of Genes Up-Regulated in Normal Cycling Cells Compared to G0 Gene Fold Up-regulation PCNA 3 CDC2 8 CCNB2 5 CCN1 3.5 CDC20 6 CDC25A 3.5 MCM5 3 In addition, many of the genes identified in our analysis are consistent with other published expression profiles for haemopoietic cells. Curiously, we have identified unanticipated changes in expression of cell cycle genes in the CML quiescent cells, which merit further investigation. We have also identified a number of unexpected genes as being more than 5 fold changed in the quiescent cells compared to dividing cells for both normal and CML samples. Specifically, there is a large cohort of genes preferentially expressed in quiescent normal or CML cells, which encode members of the chemokine family of proteins. Work is ongoing to establish the relevance, if any, of these genes to stem cell quiescence.


2020 ◽  
Vol 89 (1) ◽  
pp. 103-133 ◽  
Author(s):  
David P. Waterman ◽  
James E. Haber ◽  
Marcus B. Smolka

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Sign in / Sign up

Export Citation Format

Share Document