Isolation and characterization of nuclear envelopes from three variant cell lines of the Shionogi mouse mammary carcinoma: Identification of androgen-dependent peptides

1985 ◽  
Vol 63 (12) ◽  
pp. 1231-1240 ◽  
Author(s):  
Elizabeth J. Golsteyn ◽  
Cecilia Po ◽  
Yvonne A. Lefebvre

We have isolated and purified, with good yields, nuclear envelopes from an androgen-responsive and from two androgen-unresponsive cell lines of the Shionogi mouse mammary carcinoma after subjecting purified nuclei to DNase at high pH and characterized them morphologically, chemically, and enzymatically. Phase-contrast microscopy revealed the nuclei to be free of cytoplasmic tags and that the nuclear envelopes were isolated as membrane "ghosts." Electron micrographs clearly showed the double-membrane system with nuclear pore complexes which illustrates that the nuclear envelopes were ultra-structurally intact. The nuclear envelopes contained little DNA, low levels of arylesterase or acid phosphatase activity, and undetectable levels of succinate dehydrogenase and 5′-nucleotidase activity. Coomassie blue staining of the nuclear envelope fractions on sodium dodecyl sulfate – polyacrylamide gels for all three cell lines revealed that most of the polypeptides were similar. However, we have identified androgen-dependent peptides of molecular weights 29 000, 32 000, and 34 000 in nuclear envelopes of the androgen-responsive cell line peptide profiles by comparing the nuclear envelopes prepared from the androgen-responsive cell line grown in intact mice, in castrated mice, and in mice which had been injected with testosterone after castration. Further investigation of the androgen regulation of these nuclear envelope peptides may help us understand the molecular mechanisms involved during morphological changes of the nucleus which occur in response to different hormonal environments.

1984 ◽  
Vol 62 (2-3) ◽  
pp. 121-128
Author(s):  
Yvonne A. Lefebvre ◽  
Janice J. Caskey ◽  
Linda D. Kline

Modifications of three isolation methods were used to purify nuclei from an androgen-dependent cell line (AD) and two androgen-independent cell lines (AI1 and AI2) of the Shionogi mouse mammary carcinoma. Yields of nuclei, contamination of the nuclei by whole cells, monitoring of cytoplasmic tags by phase-contrast microscopy, and biochemical analyses were used to compare the methods. Purification with the cationic detergent cetylpyridinium chloride (CPC) resulted in greater yields of nuclei than purification of nuclei using Triton N-101. Purification by glycerol loading followed by hypotonic shock, although resulting in somewhat less whole cell contamination of the nuclei, yielded fewer nuclei per gram wet weight starting tissue. Phase-contrast microscopy showed the relative absence of cytoplasmic tags when nuclei were prepared by either the Triton N-101 or CPC methods. However, the yield of protein per nucleus was less when nuclei were prepared using CPC. Androgen uptake by nuclei of three cell lines was markedly reduced in those nuclei prepared by the CPC method as compared with those prepared by the Triton N-101 method. In the case of the AD tumour cell line nuclei prepared by the CPC method, both the affinity of the nuclei for dihydrotestosterone and the number of uptake sites were reduced when compared with AD tumour cell line nuclei prepared by the modified Triton N-101 method.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 502
Author(s):  
Filipe Almeida ◽  
Andreia Gameiro ◽  
Jorge Correia ◽  
Fernando Ferreira

Feline mammary carcinoma (FMC) is the third most common type of neoplasia in cats, sharing similar epidemiological features with human breast cancer. In humans, histone deacetylases (HDACs) play an important role in the regulation of gene expression, with HDAC inhibitors (HDACis) disrupting gene expression and leading to cell death. In parallel, microtubules inhibitors (MTIs) interfere with the polymerization of microtubules, leading to cell cycle arrest and apoptosis. Although HDACis and MTIs are used in human cancer patients, in cats, data is scarce. In this study, we evaluated the antitumor properties of six HDACis (CI-994, panobinostat, SAHA, SBHA, scriptaid, and trichostatin A) and four MTIs (colchicine, nocodazole, paclitaxel, and vinblastine) using three FMC cell lines (CAT-MT, FMCp, and FMCm), and compared with the human breast cancer cell line (SK-BR-3). HDACis and MTIs exhibited dose-dependent antitumor effects in FMC cell lines, and for all inhibitors, the IC50 values were determined, with one feline cell line showing reduced susceptibility (FMCm). Immunoblot analysis confirmed an increase in the acetylation status of core histone protein HDAC3 and flow cytometry showed that HDACis and MTIs lead to cellular apoptosis. Overall, our study uncovers HDACis and MTIs as promising anti-cancer agents to treat FMCs.


2010 ◽  
Vol 21 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Monika Zwerger ◽  
Thorsten Kolb ◽  
Karsten Richter ◽  
Iakowos Karakesisoglou ◽  
Harald Herrmann

Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1653-1653
Author(s):  
Silvia Locatelli ◽  
Arianna Giacomini ◽  
Anna Guidetti ◽  
Loredana Cleris ◽  
Michele Magni ◽  
...  

Abstract Abstract 1653 Introduction: A significant proportion of Hodgkin lymphoma (HL) patients refractory to first-line chemotherapy or relapsing after autologous transplantation are not cured with currently available treatments and require new treatments. The PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in the majority of HL. These pathways can be targeted using the AKT inhibitor perifosine (Æterna Zentaris GmBH, Germany, EU), and the RAF/MEK/ERK inhibitor sorafenib (Nexavar®, Bayer, Germany, EU). We hypothesized that perifosine in combination with sorafenib might have a therapeutic activity in HL by overcoming the cytoprotective and anti-apoptotic effects of PI3K/Akt and RAF/MEK/ERK pathways. Since preclinical evidence supporting the anti-lymphoma effects of the perifosine/sorafenib combination are still lacking, the present study aimed at investigating in vitro and in vivo the activity and mechanism(s) of action of this two-drug combination. METHODS: Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P ≤.0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of apoptosis. In responsive cell lines, WB analysis showed that anti-proliferative events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P ≤.0001) as well as mice receiving perifosine alone (49 days, P ≤.03) or sorafenib alone (54 days, P ≤.007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P ≤.0001) and necrosis (2- to 8-fold, P ≤.0001), as compared to controls or treatment with single agents. CONCLUSIONS: Perifosine/sorafenib combination resulted in potent anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation in HL patients. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 33 (1) ◽  
pp. 179-184 ◽  
Author(s):  
QINGFEI WANG ◽  
HUI DING ◽  
HAI WANG ◽  
PING LI ◽  
BAORUI LIU ◽  
...  

2006 ◽  
Vol 52 (3) ◽  
pp. 266-271 ◽  
Author(s):  
Martin A Erlandson ◽  
Doug Baldwin ◽  
Melissa Haveroen ◽  
B Andrew Keddie

Seven plaque-purified genotypic variants or strains, derived from a previously described field isolate of the Malacosoma disstria Nucleopolyhedrovirus (MadiNPV) from Alberta populations of forest tent caterpillar, were characterized based on distinctive restriction endonuclease fragment patterns. Two strains, MadiNPV-pp3 and MadiNPV-pp11, were selected for further characterization, as they represented strains producing high and low budded virus (BV) titres, respectively, in the M. disstria cell line UA-Md203. Analysis of restriction endonuclease fragment profiles indicated the genomes differed significantly in size, 133.8 ± 2.4 kb for MadiNPV-pp3 and 118.1 ± 3.5 kb for MadiNPV-pp11. These strains were characterized based on their BV production in three different cell lines derived from M. disstria haemocytes. Compared with MadiNPV-pp11, MadiNPV-pp3 produced two- to three-fold more BVs in UA-Md203 and 210 other cell lines; however, BV production was only marginally higher for MadiNPV-pp3 in the UA-Md221 cell line. Similarly, the yield of polyhedral inclusion bodies was significantly higher for MadiNPV-pp3 in UA-Md203 and 210 cell lines than for MadiNPV-pp11 but not in the UA-Md221 cell line. This data, although derived from a limited number of cell lines, suggested MadiNPV-pp3 may have a broader tissue tropism than MadiNPV-pp11.Key words: forest tent caterpillar, Malacosoma disstria, Nucleopolyhedrovirus.


1987 ◽  
Vol 7 (9) ◽  
pp. 3365-3370
Author(s):  
A Fusco ◽  
M T Berlingieri ◽  
P P Di Fiore ◽  
G Portella ◽  
M Grieco ◽  
...  

A system of epithelial cells is described in which it is possible to study the number and the nature of genes capable of conferring the malignant phenotype. Two fully differentiated, hormone-responsive cell lines from rat thyroid glands are presented which are susceptible to one-step or two-step transformation upon infection with several murine acute retroviruses. After infection, both cell lines became independent from their thyrotropic hormone requirement for growth. However, complete transformation was achieved with one of the cell lines (FRTL-5 Cl 2), whereas the other cell line (PC Cl 3) failed to grow in agar and to give rise to tumors in vivo. The latter cell line was susceptible to complete transformation upon cooperation of the v-ras-Ha and the human c-myc oncogenes.


Sign in / Sign up

Export Citation Format

Share Document