Drug and metabolite-induced perturbations in nuclear structure and function: a review

1990 ◽  
Vol 68 (2) ◽  
pp. 408-426 ◽  
Author(s):  
Klaus Brasch

Clarification of large-scale organization in cell nuclei is central to a full understanding of the mechanisms which underlie replication, transcription, and interaction with the cytoplasmic compartment. Many drugs and natural biological agents affect such processes directly, through inhibitory or stimulatory action, and often reveal structural and functional aspects in nuclei not otherwise apparent. There is increasing evidence that the pore complex – lamina of the nuclear matrix is a primary structural element during interphase, which is pivotal to most nuclear processes. This communication reviews evidence based on studies with drugs, inhibitors, and natural biological processes, that the nuclear matrix concept is indeed valid. It is further shown that despite diversity in mode of action and affected target cells, many compounds induce related or complementary changes in nuclei and that such uniformity in pattern is attributable to the nuclear matrix. A general model of the functional organization of the nucleus is presented, to account for the perturbations observed after mass interference with either transcription, replication, or protein synthesis.Key words: nuclear structure, nuclear function, nuclear matrix.

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 308
Author(s):  
Kazimierz Leonard Butelski

The subject of this study is contemporary odeons in Poland, where 11 covered amphitheaters (odeons) have been built since 2005. The odeons were selected from a wider collection of 57 functioning amphitheaters. The study collected data on location, form, function, and construction. The data sources included the literature, archival research, design documentation, and competition entries. Descriptive and graphical comparative analyses of the phenomena, based on the statistics for completed structures and on design experiments in the case of unbuilt structures, were the two main research methods used in this study. The emergence and development directions of the typology of open cultural spaces from amphitheaters to odeons are presented in a global and regional context. Their interrelationships, affecting form and function, were also analyzed. The influence of high-end materials that were used to create these complex, large-scale spatial structures, and their impact on the environment, has been presented. The contemporary roofs covering the entertainment and stage complex were analyzed in relation to environmental factors, determining the location of the odeons. The functional aspects of these buildings and their cultural significance on a local, regional and global scale were discussed. The odeon in Biała Podlaska, built in 2019, was chosen as a case study to show, in detail, the complexity of the formation of contemporary odeons. In the discussion on the direction of the further evolution of open spaces for culture, an example of an unrealized competition design proposal of mobile roofing forms for the eighteenth-century amphitheater in the Royal Baths Park in Warsaw, Poland, was presented. The conclusions emphasize the environmental, spatial, functional, social and economic values of the establishment and functioning of contemporary odeons as open spaces of culture that are compliant with the principles of sustainable development.


2017 ◽  
Author(s):  
Jean Cury ◽  
Marie Touchon ◽  
Eduardo P. C. Rocha

AbstractConjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses show that ICEs are modular and that their gene repertoires can be grouped in function of their conjugation types, even if integrases were shown to be paraphyletic relative to the latter. We show that there are general trends in the functional organization of genes within ICEs and of ICEs within the bacterial chromosome paving the way for future functional and evolutionary analyses.


2021 ◽  
Author(s):  
Bin Wan ◽  
Şeyma Bayrak ◽  
Ting Xu ◽  
H. Lina Schaare ◽  
Richard A.I. Bethlehem ◽  
...  

The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, i.e., asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a hierarchical functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization. These asymmetries were heritable and comparable between humans and macaques, suggesting (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques and variable heritability in humans. This may reflect an evolutionary adaptation allowing for experience-dependent specialization, linked to higher-order cognitive functions uniquely developed in humans.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


Author(s):  
Makoto Ogata

Abstract Carbohydrates play important and diverse roles in the fundamental processes of life. We have established a method for accurately and a large scale synthesis of functional carbohydrates with diverse properties using a unique enzymatic method. Furthermore, various artificial glycan-conjugated molecules have been developed by adding these synthetic carbohydrates to macromolecules and to middle and low molecular weight molecules with different properties. These glycan-conjugated molecules have biological activities comparable to or higher than those of natural compounds, and present unique functions. In this review, several synthetic glycan-conjugated molecules are taken as examples to show design, synthesis and function.


Science ◽  
2021 ◽  
Vol 372 (6541) ◽  
pp. 512-516
Author(s):  
Yan Zhou ◽  
Xuexia Xu ◽  
Yifeng Wei ◽  
Yu Cheng ◽  
Yu Guo ◽  
...  

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20150603 ◽  
Author(s):  
Shaun S. Killen ◽  
Julie J. H. Nati ◽  
Cory D. Suski

The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus , we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.


Sign in / Sign up

Export Citation Format

Share Document